Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Biomacromolecules ; 24(2): 576-591, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36599074

RESUMO

Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomonas aeruginosa. To achieve this, the potential of a range of recently reported, terpene-derived monomers to deliver biofilm resistance when polymerized was both predicted and ranked by the application of the α parameter to key features in their molecular structures. These monomers were derived from commercially available terpenes (i.e., α-pinene, ß-pinene, and carvone), and the prediction of the biofilm resistance properties of the resultant novel (meth)acrylate polymers was confirmed using a combination of high-throughput polymerization screening (in a microarray format) and in vitro testing. Furthermore, monomers, which both exhibited the highest predicted biofilm anti-biofilm behavior and required less than two synthetic stages to be generated, were scaled-up and successfully printed using an inkjet "valve-based" 3D printer. Also, these materials were used to produce polymeric surfactants that were successfully used in microfluidic processing to create microparticles that possessed bio-instructive surfaces. As part of the up-scaling process, a novel rearrangement was observed in a proposed single-step synthesis of α-terpinyl methacrylate via methacryloxylation, which resulted in isolation of an isobornyl-bornyl methacrylate monomer mixture, and the resultant copolymer was also shown to be bacterial attachment-resistant. As there has been great interest in the current literature upon the adoption of these novel terpene-based polymers as green replacements for petrochemical-derived plastics, these observations have significant potential to produce new bio-resistant coatings, packaging materials, fibers, medical devices, etc.


Assuntos
Biofilmes , Terpenos , Terpenos/farmacologia , Polímeros/química , Bactérias , Metacrilatos
2.
Nanomedicine ; 49: 102664, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813014

RESUMO

We investigated how the biodistribution of cannabidiol (CBD) within the central nervous system (CNS) is influenced by two different formulations, an oil-in-water (O/W) nanoemulsion and polymer-coated nanoparticles (PCNPs). We observed that both CBD formulations administered were preferentially retained in the spinal cord, with high concentrations reaching the brain within 10 min of administration. The CBD nanoemulsion reached Cmax in the brain at 210 ng/g within 120 min (Tmax), whereas the CBD PCNPs had a Cmax of 94 ng/g at 30 min (Tmax), indicating that rapid brain delivery can be achieved through the use of PCNPs. Moreover, the AUC0-4h of CBD in the brain was increased 3.7-fold through the delivery of the nanoemulsion as opposed to the PCNPs, indicating higher retention of CBD at this site. Both formulations exhibited immediate anti-nociceptive effects in comparison to the respective blank formulations.


Assuntos
Canabidiol , Nanopartículas , Humanos , Distribuição Tecidual , Dor/tratamento farmacológico , Encéfalo , Administração Oral
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430814

RESUMO

Nanoparticle (NP) drug delivery systems are known to potentially enhance the efficacy of therapeutic agents. As for antimicrobial drugs, therapeutic solutions against drug-resistant microbes are urgently needed due to the worldwide antimicrobial resistance issue. Usnic acid is a widely investigated antimicrobial agent suffering from poor water solubility. In this study, polymer nanoparticles based on polyglycerol adipate (PGA) grafted with polycaprolactone (PCL) were developed as carriers for usnic acid. We demonstrated the potential of the developed systems in ensuring prolonged bactericidal activity against a model bacterial species, Staphylococcus epidermidis. The macromolecular architecture changes produced by PCL grafted from PGA significantly influenced the drug release profile and mechanism. Specifically, by varying the length of PCL arms linked to the PGA backbone, it was possible to tune the drug release from a burst anomalous drug release (high PCL chain length) to a slow diffusion-controlled release (low PCL chain length). The developed nanosystems showed a prolonged antimicrobial activity (up to at least 7 days) which could be used in preventing/treating infections occurring at different body sites, including medical device-related infection and mucosal/skin surface, where Gram-positive bacteria are commonly involved.


Assuntos
Anti-Infecciosos , Nanopartículas , Adipatos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Polímeros , Staphylococcus epidermidis
4.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200185

RESUMO

Segmented polyurethane ionomers find prominent applications in the biomedical field since they can combine the good mechanical and biostability properties of polyurethanes (PUs) with the strong hydrophilicity features of ionomers. In this work, PU ionomers were prepared from a carboxylated diol, poly(tetrahydrofuran) (soft phase) and a small library of diisocyanates (hard phase), either aliphatic or aromatic. The synthesized PUs were characterized to investigate the effect of ionic groups and the nature of diisocyanate upon the structure-property relationship. Results showed how the polymer hard/soft phase segregation was affected by both the concentration of ionic groups and the type of diisocyanate. Specifically, PUs obtained with aliphatic diisocyanates possessed a hard/soft phase segregation stronger than PUs with aromatic diisocyanates, as well as greater bulk and surface hydrophilicity. In contrast, a higher content of ionic groups per polymer repeat unit promoted phase mixing. The neutralization of polymer ionic groups with silver or zinc further increased the hard/soft phase segregation and provided polymers with antimicrobial properties. In particular, the Zinc/PU hybrid systems possessed activity only against the Gram-positive Staphylococcus epidermidis while Silver/PU systems were active also against the Gram-negative Pseudomonas aeruginosa. The herein-obtained polyurethanes could find promising applications as antimicrobial coatings for different kinds of surfaces including medical devices, fabric for wound dressings and other textiles.


Assuntos
Materiais Biocompatíveis/farmacologia , Transição de Fase , Poliuretanos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Staphylococcus epidermidis/efeitos dos fármacos , Zinco/química , Teste de Materiais , Resistência à Tração
5.
Mol Pharm ; 17(6): 2083-2098, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348676

RESUMO

Key challenges hindering the clinical translation of the use of nanoparticles (NP) for delivery of drugs to tumors are inadequate drug loading and premature drug release. This study focused on understanding the conditions required to produce nanoparticles that can reach their target site with sufficient drug loading and drug retention for effective pharmacological action. Etoposide, etoposide phosphate, and teniposide were screened against modified poly(glycerol) adipate (PGA) based polymers by monitoring drug release from 40% drug in polymer films and using Fourier transform infrared spectroscopy (FTIR) and contact angle measurements to help understand the release results. Polymers were matched with the specific drugs based on the interactions observed. NP were then prepared by an interfacial deposition method. NPs were characterized and resulted in drug loadings ranging from 3.5% and 5%, respectively, for etoposide phosphate and etoposide with PGA modified with stearate (PGA85%C18) up to 13.4% for teniposide with PGA modified with tryptophan (PGA50%Try) and drug release of just 22-35% over 24 h. Assessment of cytotoxicity showed that etoposide nanoparticles with PGA85%C18 were more potent than an equivalent amount of free drug. This screening method to match polymers to drugs to monitor based drug and polymer interactions thus resulted in the formulation of nanoparticles with higher drug loading and slower release and potential for further development for clinical applications.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Liberação Controlada de Fármacos , Nanopartículas/química , Poliésteres/química
6.
Macromol Rapid Commun ; 41(18): e2000190, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32400917

RESUMO

Polymer-drug conjugates have received considerable attention over the last decades due to their potential for improving the clinical outcomes for a range of diseases. It is of importance to develop methods for their preparation that have simple synthesis and purification requirements but maintain high therapeutic efficacy and utilize macromolecules that can be cleared via natural excretory pathways upon breakdown. Herein, the combination of ring-opening polymerization (ROP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization is described for the straightforward synthesis of amphiphilic, stimuli-responsive, biodegradable, and highly functionalizable hyperbranched polymers. These unimolecular nanoparticles demonstrate a versatile platform for the synthesis of polymer-drug conjugates owing to the inclusion of a Boc-protected polycarbonate moiety in either a block or random copolymer formation. A proof-of-concept study on the complexation of the poorly water-soluble antimicrobial drug usnic acid results in polymer-drug complexes with powerful antimicrobial properties against gram-positive bacteria. Therefore, this work highlights the potential of amphiphilic and biodegradable hyperbranched polymers for antimicrobial applications.


Assuntos
Anti-Infecciosos , Benzofuranos , Anti-Infecciosos/farmacologia , Polimerização , Polímeros
7.
Molecules ; 25(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207806

RESUMO

Pyrazolo[3,4-d]pyrimidines represent an important class of heterocyclic compounds well-known for their anticancer activity exerted by the inhibition of eukaryotic protein kinases. Recently, pyrazolo[3,4-d]pyrimidines have become increasingly attractive for their potential antimicrobial properties. Here, we explored the activity of a library of in-house pyrazolo[3,4-d]pyrimidines, targeting human protein kinases, against Staphylococcus aureus and Escherichia coli and their interaction with ampicillin and kanamycin, representing important classes of clinically used antibiotics. Our results represent a first step towards the potential application of dual active pyrazolo[3,4-d]pyrimidine kinase inhibitors in the prevention and treatment of bacterial infections in cancer patients.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Filogenia , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Pirazóis/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
8.
Bioconjug Chem ; 30(5): 1371-1384, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30946570

RESUMO

Animal models are effective for assessing tumor localization of nanosystems but difficult to use for studying penetration beyond the vasculature. Here, we have used well-characterized HCT116 colorectal cancer spheroids to study the effect of nanoparticle (NP) physicochemical properties on penetration and uptake. Incubation of spheroids with Hoechst 33342 resulted in a dye gradient, which facilitated discrimination between the populations of cells in the core and at the periphery of spheroids by flow cytometry. This approach was used to compare doxorubicin and liposomal doxorubicin (Caelyx) and a range of model poly(styrene) nanoparticles of different sizes (30 nm, 50 nm, 100 nm) and with different surface chemistries (50 nm uniform plain, carboxylated, aminated and a range of NPs and polyethylene glycol modified NPs prepared from a promising new functionalized biodegradable polymer (poly(glycerol-adipate), PGA). Unmodified poly(styrene) nanoparticles (30 nm/50 nm) were able to penetrate to the core of HCT116 spheroids more efficiently than larger poly(styrene) nanoparticles (100 nm). Surprisingly, penetration of 30 and 50 nm particles was as good as clinically relevant doxorubicin concentrations. However, penetration was reduced with higher surface charge. PGA NPs of 100 nm showed similar penetration into spheroids as 50 nm poly(styrene) nanoparticles, which may be related to polymer flexibility. PEG surface modification of polymeric particles significantly improved penetration into the spheroid core. The new model combining the use of spheroids Hoechst staining and flow cytometry was a useful model for assessing NP penetration and gives useful insights into the effects of NPs' physical properties when designing nanomedicines.


Assuntos
Neoplasias Colorretais/metabolismo , Nanopartículas , Esferoides Celulares/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Benzimidazóis/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Corantes Fluorescentes/metabolismo , Células HCT116 , Humanos , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Propriedades de Superfície
9.
Mol Pharm ; 15(10): 4654-4667, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30142269

RESUMO

The problem of predicting small molecule-polymer compatibility is relevant to many areas of chemistry and pharmaceutical science but particularly drug delivery. Computational methods based on Hildebrand and Hansen solubility parameters, and the estimation of the Flory-Huggins parameter, χ, have proliferated across the literature. Focusing on the need to develop amorphous solid dispersions to improve the bioavailability of poorly soluble drug candidates, an innovative, high-throughput 2D printing method has been employed to rapidly assess the compatibility of 54 drug-polymer pairings (nine drug compounds in six polymers). In this study, the first systematic assessment of the in silico methods for this application, neither the solubility parameter approach nor the calculated χ, correctly predicted drug-polymer compatibility. The theoretical limitations of the solubility parameter approach are discussed and used to explain why this approach is fundamentally unsuitable for predicting polymer-drug interactions. Examination of the original sources describing the method for calculating χ shows that only the enthalpic contributions to the term have been included, and the corrective entropic term is absent. The development and application of new in silico techniques, that consider all parts of the free energy of mixing, are needed in order to usefully predict small molecule-polymer compatibility and to realize the ambition of a drug-polymer screening method.


Assuntos
Polímeros/química , Estabilidade de Medicamentos , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/química , Solubilidade , Termodinâmica
10.
Mol Pharm ; 14(6): 2079-2087, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28502181

RESUMO

A miniaturized, high-throughput assay was optimized to screen polymer-drug solid dispersions using a 2-D Inkjet printer. By simply printing nanoliter amounts of polymer and drug solutions onto an inert surface, drug/polymer microdots of tunable composition were produced in an easily addressable microarray format. The amount of material printed for each dried spot ranged from 25 ng to 650 ng. These arrays were used to assess the stability of drug/polymer dispersions with respect to recrystallization, using polarized light microscopy. One array with a panel of 6 drugs formulated at different ratios with a poly(vinylpyrrolidone-vinyl acetate) (PVPVA) copolymer was developed to estimate a possible bulk (gram-scale) approximation threshold from the final printed nanoamount of formulation. Another array was printed at a fixed final amount of material to establish a literature comparison of one drug formulated with different commercial polymers for validation. This new approach may offer significant efficiency in pharmaceutical formulation screening, with each experiment in the nanomicro-array format requiring from 3 up to 6 orders of magnitude lower amounts of sample than conventional screening methods.


Assuntos
Composição de Medicamentos/métodos , Polímeros/química , Povidona/análogos & derivados , Portadores de Fármacos/química , Microscopia de Polarização , Povidona/química
11.
Adv Exp Med Biol ; 901: 25-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26542603

RESUMO

The accumulation of reactive oxygen species (ROS) in microbial biofilms has been recently recognized to play a role in promoting antibiotic resistance in biofilm-growing bacteria. ROS are also over-produced when a medical device is implanted and they can promote device susceptibility to infection or aseptic loosening. High levels of ROS seem also to be responsible for the establishment of chronic wounds.In this study, a novel antioxidant polyacrylate was synthesized and investigated in terms of antimicrobial and antibiofilm activity. The polymer possesses in side-chain hydroxytyrosol (HTy), that is a polyphenolic compound extracted from olive oil wastewaters.The obtained 60 nm in size polymer nanoparticles showed good scavenging and antibacterial activity versus a strain of Staphylococcus epidermidis. Microbial adherence assays evidenced that the hydroxytyrosol-containing polymer was able to significantly reduce bacterial adhesion compared to the control. These findings open novel perspective for a successful use of this antioxidant polymer for the prevention or treatment of biofilm-based infections as those related to medical devices or chronic wounds.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/química , Antioxidantes/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/fisiologia
12.
Polymers (Basel) ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337316

RESUMO

The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid's limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid.

13.
Biomater Sci ; 12(7): 1822-1840, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407276

RESUMO

Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro screening of combinations of these drugs, administered directly or encapsulated within polymer nanoparticles, in both 2D and in 3D spheroid models of breast cancer. A variety of assays were used to evaluate drug potency, and calculations of combination index (CI) values indicated that synergistic effects of drug combinations occurred in a molar-ratio dependent manner. It is suggested that the mechanisms of synergy were related to enhancement of DNA damage as shown by the level of double-strand DNA breaks, and mechanisms of antagonism associated with mitochondrial mediated cell survival, as indicated by reactive oxygen species (ROS) generation. Enhanced drug delivery and potency was observed with nanoparticle formulations, with a greater extent of doxorubicin localised to cell nuclei as evidenced by microscopy, and higher cytotoxicity at the same time points compared to free drugs. Together, the work presented identifies specific combinations of doxorubicin and olaparib which were most effective in a panel of TNBC cell lines, explores the mechanisms by which these combined agents might act, and shows that formulation of these drug combinations into polymeric nanoparticles at specific ratios conserves synergistic action and enhanced potency in vitro compared to the free drugs.


Assuntos
Antineoplásicos , Nanopartículas , Ftalazinas , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Combinação de Medicamentos , Linhagem Celular Tumoral
14.
Biomed Pharmacother ; 175: 116647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703503

RESUMO

OBJECTIVE: To improve the biological and toxicological properties of Mefenamic acid (MA), the galactosylated prodrug of MA named MefeGAL was included in polymeric solid dispersions (PSs) composed of poly(glycerol adipate) (PGA) and Pluronic® F68 (MefeGAL-PS). MefeGAL-PS was compared with polymeric solid formulations of MA (MA-PS) or a mixture of equal ratio of MefeGAL/MA (Mix-PS). METHODS: The in vitro and in vivo pharmacological and toxicological profiles of PSs have been investigated. In detail, we evaluated the anti-inflammatory (carrageenan-induced paw edema test), analgesic (acetic acid-induced writhing test) and ulcerogenic activity in mice after oral treatment. Additionally, the antiproliferative activity of PSs was assessed on in vitro models of colorectal and non-small cell lung cancer. RESULTS: When the PSs were resuspended in water, MefeGAL's, MA's and their mixture's apparent solubilities improved due to the interaction with the polymeric formulation. By comparing the in-vivo biological performance of MefeGAL-PS with that of MA, MefeGAL and MA-PS, it was seen that MefeGAL-PS exhibited the same sustained and delayed analgesic and anti-inflammatory profile as MefeGAL but did not cause gastrointestinal irritation. The pharmacological effect of Mix-PS was present from the first hours after administration, lasting about 44 hours with only slight gastric mucosa irritation. In-vitro evaluation indicated that Mix-PS had statistically significant higher cytotoxicity than MA-PS and MefeGAL-PS. CONCLUSIONS: These preliminary data are promising evidence that the galactosylated prodrug approach in tandem with a polymer-drug solid dispersion formulation strategy could represent a new drug delivery route to improve the solubility and biological activity of NSAIDs.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Mefenâmico , Animais , Ácido Mefenâmico/farmacologia , Ácido Mefenâmico/administração & dosagem , Camundongos , Humanos , Masculino , Edema/tratamento farmacológico , Edema/induzido quimicamente , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Pró-Fármacos/farmacologia , Pró-Fármacos/administração & dosagem , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Analgésicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/toxicidade , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Poloxâmero/química
15.
Nat Commun ; 15(1): 3137, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605004

RESUMO

Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the polymeric materials used in LS. This constrains the functionality of the items produced, including limited available colours. Moreover, PA-12 objects tend to biofoul in wet environments. Therefore, a key challenge is to develop an inexpensive route to introduce desirable functionality to PA-12. We report a facile, clean, and scalable approach to modification of PA-12, exploiting supercritical carbon dioxide (scCO2) and free radical polymerizations to yield functionalised PA-12 materials. These can be easily printed using commercial apparatus. We demonstrate the potential by creating coloured PA-12 materials and show that the same approach can be utilized to create anti-biofouling objects. Our approach to functionalise materials could open significant new applications for AM.

16.
Colloids Surf B Biointerfaces ; 236: 113828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452625

RESUMO

Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.


Assuntos
Nanopartículas , Poliésteres , Poliésteres/química , Glicerol/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Adipatos , Nanopartículas/química
17.
Green Chem ; 26(3): 1345-1355, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323306

RESUMO

Volumetric Additive Manufacturing (VAM) represents a revolutionary advancement in the field of Additive Manufacturing, as it allows for the creation of objects in a single, cohesive process, rather than in a layer-by-layer approach. This innovative technique offers unparalleled design freedom and significantly reduces printing times. A current limitation of VAM is the availability of suitable resins with the required photoreactive chemistry and from sustainable sources. To support the application of this technology, we have developed a sustainable resin based on polyglycerol, a bioderived (e.g., vegetable origin), colourless, and easily functionisable oligomer produced from glycerol. To transform polyglycerol-6 into an acrylate photo-printable resin we adopted a simple, one-step, and scalable synthesis route. Polyglycerol-6-acrylate fulfils all the necessary criteria for volumetric printing (transparency, photo-reactivity, viscosity) and was successfully used to print a variety of models with intricate geometries and good resolution. The waste resin was found to be reusable with minimal performance issues, improving resin utilisation and minimising waste material. Furthermore, by incorporating dopants such as poly(glycerol) adipate acrylate (PGA-A) and 10,12-pentacosadyinoic acid (PCDA), we demonstrated the ability to print objects with a diverse range of functionalities, including temperature sensing probes and a polyester excipient, highlighting the potential applications of these new resins.

18.
Int J Mol Sci ; 14(4): 7356-69, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23549269

RESUMO

Usnic acid, a potent antimicrobial and anticancer agent, poorly soluble in water, was complexed to novel antimicrobial polyacrylamides by establishment of strong acidic-base interactions. Thermal and spectroscopic analysis evidenced a molecular dispersion of the drug in the polymers and a complete drug/polymer miscibility for all the tested compositions. The polymer/drug complexes promptly dissolved in water and possessed a greater antimicrobial activity against Staphylococcus epidermidis than both the free drug and the polymer alone. The best results were obtained with the complex based on the lowest molecular weight polymer and containing a low drug content. Such a complex showed a larger inhibition zone of bacterial growth and a lower minimum inhibitory concentration (MIC) with respect to usnic acid alone. This improved killing effect is presumably due to the reduced size of the complexes that allows an efficient cellular uptake of the antimicrobial complexes. The killing effect extent seems to be not significantly dependent on usnic acid content in the samples.


Assuntos
Resinas Acrílicas , Anti-Infecciosos , Benzofuranos , Staphylococcus epidermidis/crescimento & desenvolvimento , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Solubilidade
19.
Pharmaceutics ; 15(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631315

RESUMO

This study aimed to fabricate new variations of glycerol-based polyesters by grafting poly(glycerol adipate) (PGA) with hydrophobic bioactive moieties, tocopherol (TOC), and cholesterol (CHO). Their effects on nanoparticle (NP) formation, drug release, and cellular responses in cancer and normal cells were evaluated. CHO and TOC were successfully grafted onto PGA backbones with 30% and 50% mole grafting. Increasing the percentage of mole grafting in both molecules increased the glass transition temperature and water contact angle of the final polymers but decreased the critical micelle concentration of the formulated particles. PGA-TOC NPs reduced the proliferation of MDA-MB-231 cancer cells. However, they enhanced the proliferation of primary dermal fibroblasts within a specific concentration range. PGA-CHO NPs minimally affected the growth of cancer and normal cells. Both types of NPs did not affect apoptosis or the cell cycle of cancer cells. PGA-CHO and PGA-TOC NPs were able to entrap SN-38, a hydrophobic anticancer drug, with a particle size <200 nm. PGA-CHO NPs had a higher drug loading capacity and a greater drug release than PGA-TOC NPs. However, SN-38-loaded PGA-TOC NPs showed higher toxicity than SN-38 and SN-38-loaded PGA-CHO NPs due to the combined effects of antiproliferation and higher cellular uptake. Compared with SN-38, the drug-loaded NPs more profoundly induced sub-G1 in the cell cycle analysis and apoptosis of cancer cells in a similar pattern. Therefore, PGA-CHO and PGA-TOC polymers have potential applications as delivery systems for anticancer drugs.

20.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514459

RESUMO

Polymersomes are an exciting modality for drug delivery due to their structural similarity to biological cells and their ability to encapsulate both hydrophilic and hydrophobic drugs. In this regard, the current work aimed to develop multifunctional polymersomes, integrating dye (with hydrophobic Nile red and hydrophilic sulfo-cyanine5-NHS ester as model drugs) encapsulation, stimulus responsiveness, and surface-ligand modifications. Polymersomes constituting poly(N-2-hydroxypropylmethacrylamide)-b-poly(N-(2-(methylthio)ethyl)acrylamide) (PHPMAm-b-PMTEAM) are prepared by aqueous dispersion RAFT-mediated polymerization-induced self-assembly (PISA). The hydrophilic block lengths have an effect on the obtained morphologies, with short chain P(HPMAm)16 affording spheres and long chain P(HPMAm)43 yielding vesicles. This further induces different responses to H2O2, with spheres fragmenting and vesicles aggregating. Folic acid (FA) is successfully conjugated to the P(HPMAm)43, which self-assembles into FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes. The FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes entrap both hydrophobic Nile red (NR) and hydrophilic Cy5 dye. The NR-loaded FA-linked polymersomes exhibit a controlled release of the encapsulated NR dye when exposed to 10 mM H2O2. All the polymersomes formed are stable in human plasma and well-tolerated in MCF-7 breast cancer cells. These preliminary results demonstrate that, with simple and scalable chemistry, PISA offers access to different shapes and opens up the possibility of the one-pot synthesis of multicompartmental and responsive polymersomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa