Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Graph Model ; 122: 108496, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098283

RESUMO

Advancement in solar cells has gained the attention of researchers due to increasing demand and renewable energy sources. Modeling of electron absorbers and donors has been performed extensively for the development of efficient solar cells. In this regard, efforts are being made for designing effective units for the active layer of solar cells. In this study, CXC22 was utilized as a reference in which acetylenic anthracene acted as a π bridge and infrastructure was D-π-A. We theoretically designed four novel dye-sensitized solar cells JU1-JU4 by utilizing reference molecules to improve the photovoltaic and optoelectronic properties. All designed molecules differ from R by donor moiety modifications. Different approaches were done to R and all molecules to explore different analyses like binding energies, excitation energies, dipole moment, TDM (transition density matrix), PDOS (partial density of states), absorption maxima, and charge transfer analysis. For the evaluation of results, we used the DFT technique and the findings demonstrated that the JU3 molecule showed a better redshift absorption value (761 nm) as compared to all other molecules due to the presence of anthracene in the donor moiety which lengthens the conjugation. JU3 was proven to be the best candidate among all due to improved excitation energy (1.69), low energy band gap (1.93), higher λmax value, and improved electron and hole energy values leading toward higher power conversion efficiency. All the other theoretically formed molecules exhibited comparable outcomes as compared to a reference. As a result, this work revealed the potential of organic dyes with anthracene bridges for indoor optoelectronic applications. These unique systems are effective contributors to the development of high-performance solar cells. Thus, we provided efficient systems to the experimentalists for the future development of solar cells.


Assuntos
Acetileno , Alcinos , Simulação por Computador , Antracenos
2.
ACS Omega ; 8(12): 11318-11325, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008110

RESUMO

Drug carriers have been designed and investigated remarkably due to their effective use in the modern medication process. In this study, the decoration of the Mg12O12 nanocluster has been done with transition metals (Ni and Zn) for effective adsorption of metformin (anticancer drug). Decoration of Ni and Zn on a nanocluster allows two geometries, and similarly, the adsorption of metformin also provides two geometries. Density functional theory and time-dependent density functional theory have been employed at the B3LYP with 6-311G(d,p) level. The decoration of Ni and Zn offers good attachment and detachment of the drug, which is observed from their good adsorption energy values. Further, the reduction in the energy band gap is noted in the metformin-adsorbed nanocluster, which allows high charge transfer from a lower energy level to a high energy level. The drug carrier systems show an efficient working mechanism in a water solvent with the visible-light absorption range. Natural bonding orbital and dipole moment values suggested that the adsorption of the metformin causes charge separation in these systems. Moreover, low values of chemical softness with a high electrophilic index recommended that these systems are naturally stable with the least reactivity. Thus, we offer novel kinds of Ni- and Zn-decorated Mg12O12 nanoclusters as efficient carriers for metformin and also recommend them to experimentalists for the future development of drug carriers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa