Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Bioconjug Chem ; 35(6): 790-803, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38750635

RESUMO

Tumor imaging and delivery of therapeutic agents may be achieved by designing high-affinity and high-selectivity compounds recognizing a tumor cell-expressing biomarker, such as carbonic anhydrase IX (CA IX). The CAIX, overexpressed in many hypoxic solid tumors, helps adjust to the energy requirements of the hypoxic environment, reduces intracellular acidification, and participates in the metastatic invasion of adjacent tissues. Here, we designed a series of sulfonamide compounds bearing CAIX-recognizing, high-affinity, and high-selectivity groups conjugated via a PEG linker to near-infrared (NIR) fluorescent probes used in the clinic for optically guided cancer surgery. We determined compound affinities for CAIX and other 11 catalytically active CA isozymes by the thermal shift assay and showed that the affinity Kd value of CAIX was in the subnanomolar range, hundred to thousand-fold higher than those of other CA isozymes. Similar affinities were also observed for CAIX expressed on the cancer cell surface in live HeLa cell cultures, as determined by the competition assay. The NIR-fluorescent compounds showed excellent properties in visualizing CAIX-positive tumors but not CAIX-negative knockout tumors in a nude mice xenograft model. These compounds would therefore be helpful in optically guided cancer surgery and could potentially be developed for anticancer treatment by radiotherapy.


Assuntos
Antígenos de Neoplasias , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Corantes Fluorescentes , Humanos , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Animais , Corantes Fluorescentes/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Camundongos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/análise , Células HeLa , Neoplasias/diagnóstico por imagem , Camundongos Nus , Sulfonamidas/química , Raios Infravermelhos , Anidrases Carbônicas/metabolismo , Imagem Óptica/métodos
2.
Biometals ; 37(1): 267-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37728832

RESUMO

Bacterial microcompartments (BMCs) are prokaryotic organelles involved in several biochemical processes in bacterial cells. These cellular substructures consist of an icosahedral shell and an encapsulated enzymatic core. The outer shells of BMCs have been proposed as an attractive platform for the creation of novel nanomaterials, nanocages, and nanoreactors. In this study, we present a method for functionalizing recombinant GRM2-type BMC shell lumens with short cysteine-containing sequences and demonstrate that the iron and cobalt loading capacity of such modified shells is markedly increased. These results also imply that a passive flow of cobalt and iron atoms across the BMC shell could be possible.


Assuntos
Proteínas de Bactérias , Cisteína , Proteínas de Bactérias/química , Bactérias , Organelas , Peptídeos
3.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982419

RESUMO

Sobemoviruses encode serine-like 3C proteases (Pro) that participate in the processing and maturation of other virus-encoded proteins. Its cis and trans activity is mediated by the naturally unfolded virus-genome-linked protein (VPg). Nuclear magnetic resonance studies show a Pro-VPg complex interaction and VPg tertiary structure; however, information regarding structural changes of the Pro-VPg complex during interaction is lacking. Here, we solved a full Pro-VPg 3D structure of ryegrass mottle virus (RGMoV) that demonstrates the structural changes in three different conformations due to VPg interaction with Pro. We identified a unique site of VPg interaction with Pro that was not observed in other sobemoviruses, and observed different conformations of the Pro ß2 barrel. This is the first report of a full plant Pro crystal structure with its VPg cofactor. We also confirmed the existence of an unusual previously unmapped cleavage site for sobemovirus Pro in the transmembrane domain: E/A. We demonstrated that RGMoV Pro in cis activity is not regulated by VPg and that in trans, VPg can also mediate Pro in free form. Additionally, we observed Ca2+ and Zn2+ inhibitory effects on the Pro cleavage activity.


Assuntos
Lolium , Vírus de RNA , Proteólise , Peptídeo Hidrolases/metabolismo , Lolium/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Proteínas Virais/metabolismo , Endopeptidases/metabolismo , Vírus de RNA/metabolismo , Proteases Virais 3C
4.
Proteins ; 89(5): 588-594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32949018

RESUMO

Lyme disease is the most widespread vector-transmitted disease in North America and Europe, caused by infection with Borrelia burgdorferi sensu lato complex spirochetes. We report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBP28, a member of the multicopy lipoprotein (mlp) family. The structure comprises a tether peptide, five α-helices and an extended C-terminal loop. The fold is similar to that of Borrelia turicatae outer surface protein BTA121, which is known to bind lipids. These results contribute to the understanding of Lyme disease pathogenesis by revealing the molecular structure of a protein from the widely found mlp family.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Borrelia burgdorferi/metabolismo , Lipoproteínas/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia/química , Borrelia/metabolismo , Borrelia burgdorferi/química , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Doença de Lyme/microbiologia , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Chembiochem ; 22(22): 3199-3207, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34520613

RESUMO

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.


Assuntos
Azidas/química , Vacinas contra COVID-19/química , Gluconatos/química , Glicina/química , Histidina/química , Lactonas/química , Vacinas de Partículas Semelhantes a Vírus/química , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Azidas/imunologia , Vacinas contra COVID-19/imunologia , Gluconatos/imunologia , Glicina/imunologia , Histidina/imunologia , Humanos , Lactonas/imunologia , Modelos Moleculares , Estrutura Molecular , Vacinas de Partículas Semelhantes a Vírus/imunologia
6.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008553

RESUMO

Among the twelve catalytically active carbonic anhydrase isozymes present in the human body, the CAIX is highly overexpressed in various solid tumors. The enzyme acidifies the tumor microenvironment enabling invasion and metastatic processes. Therefore, many attempts have been made to design chemical compounds that would exhibit high affinity and selective binding to CAIX over the remaining eleven catalytically active CA isozymes to limit undesired side effects. It has been postulated that such drugs may have anticancer properties and could be used in tumor treatment. Here we have designed a series of compounds, methyl 5-sulfamoyl-benzoates, which bear a primary sulfonamide group, a well-known marker of CA inhibitors, and determined their affinities for all twelve CA isozymes. Variations of substituents on the benzenesulfonamide ring led to compound 4b, which exhibited an extremely high observed binding affinity to CAIX; the Kd was 0.12 nM. The intrinsic dissociation constant, where the binding-linked protonation reactions have been subtracted, reached 0.08 pM. The compound also exhibited more than 100-fold selectivity over the remaining CA isozymes. The X-ray crystallographic structure of compound 3b bound to CAIX showed the structural position, while several structures of compounds bound to other CA isozymes showed structural reasons for compound selectivity towards CAIX. Since this series of compounds possess physicochemical properties suitable for drugs, they may be developed for anticancer therapeutic purposes.


Assuntos
Benzoatos/farmacologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/farmacologia , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X/métodos , Humanos , Isoenzimas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica/fisiologia , Relação Estrutura-Atividade , Termodinâmica , Microambiente Tumoral/efeitos dos fármacos , Benzenossulfonamidas
7.
Angew Chem Int Ed Engl ; 60(23): 12847-12851, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33750007

RESUMO

Structure determination of adjuvant-coupled antigens is essential for rational vaccine development but has so far been hampered by the relatively low antigen content in vaccine formulations and by their heterogeneous composition. Here we show that magic-angle spinning (MAS) solid-state NMR can be used to assess the structure of the influenza virus hemagglutinin stalk long alpha helix antigen, both in its free, unformulated form and once chemically coupled to the surface of large virus-like particles (VLPs). The sensitivity boost provided by high-field dynamic nuclear polarization (DNP) and proton detection at fast MAS rates allows to overcome the penalty associated with the antigen dilution. Comparison of the MAS NMR fingerprints between the free and VLP-coupled forms of the antigen provides structural evidence of the conservation of its native fold upon bioconjugation. This work demonstrates that high-sensitivity MAS NMR is ripe to play a major role in vaccine design, formulation studies, and manufacturing process development.


Assuntos
Antígenos Virais/análise , Vacinas de Partículas Semelhantes a Vírus/química , Ressonância Magnética Nuclear Biomolecular
8.
Biophys J ; 119(8): 1513-1524, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32971003

RESUMO

In the design of high-affinity and enzyme isoform-selective inhibitors, we applied an approach of augmenting the substituents attached to the benzenesulfonamide scaffold in three ways, namely, substitutions at the 3,5- or 2,4,6-positions or expansion of the condensed ring system. The increased size of the substituents determined the spatial limitations of the active sites of the 12 catalytically active human carbonic anhydrase (CA) isoforms until no binding was observed because of the inability of the compounds to fit in the active site. This approach led to the discovery of high-affinity and high-selectivity compounds for the anticancer target CA IX and antiobesity target CA VB. The x-ray crystallographic structures of compounds bound to CA IX showed the positions of the bound compounds, whereas computational modeling confirmed that steric clashes prevent the binding of these compounds to other isoforms and thus avoid undesired side effects. Such an approach, based on the Lock-and-Key principle, could be used for the development of enzyme-specific drug candidate compounds.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Inibidores Enzimáticos , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Humanos , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade
9.
J Struct Biol ; 210(2): 107490, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135236

RESUMO

Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. Through a complex enzootic cycle, the bacteria transfer between two different hosts: Ixodes ticks and mammalian organisms. At the start of the tick blood meal, the spirochetes located in the tick gut upregulate the expression of several genes, mainly coding for outer surface proteins. Outer surface proteins belonging to the paralogous gene family 54 (PFam54) have been shown to be the most upregulated among the other borrelial proteins and the results clearly point to the potential importance of these proteins in the pathogenesis of Lyme disease. The significance of PFam54 proteins is confirmed by the fact that of all ten PFam54 proteins, BBA64 and BBA66 are necessary for the transfer of B. burgdorferi from infected Ixodes ticks to mammalian hosts. To enhance the understanding of the pathogenesis of Lyme disease and to promote the development of novel therapies against Lyme disease, we solved the crystal structure of the PFam54 member BBA65. Additionally, we report the structure of the B. burgdorferi BBA64 orthologous protein from B. spielmanii. Together with the previously determined crystal structures of five PFam54 members and several related proteins, we performed a comprehensive structural analysis for this important group of proteins. In addition to revealing the molecular aspects of the proteins, the structural data analysis suggests that the gene families PFam54 and PFam60, which have long been referred to as separate paralogous families, should be merged into one and designated as PFam54_60.


Assuntos
Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidade , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Animais , Borrelia burgdorferi/genética , Cristalografia por Raios X , Humanos , Ixodes/microbiologia , Spirochaetales/genética , Spirochaetales/metabolismo , Spirochaetales/patogenicidade
10.
Infect Immun ; 88(5)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32122944

RESUMO

The spirochete Borrelia burgdorferisensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.


Assuntos
Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Fator H do Complemento/imunologia , Doença de Lyme/imunologia , Carrapatos/microbiologia , Animais , Anticorpos/imunologia , Sítios de Ligação/imunologia , Proteínas do Sistema Complemento/imunologia , Feminino , Humanos , Vacinas contra Doença de Lyme/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H
11.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283813

RESUMO

A series of new 3-phenyl-5-aryl-N-(4-sulfamoylphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide derivatives was designed here, synthesized, and studied for carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity against the human (h) isozymes I, II, and VII (cytosolic, off-target isoforms), and IX and XII (anticancer drug targets). Generally, CA I was not effectively inhibited, whereas effective inhibitors were identified against both CAs II (KIs in the range of 5.2-233 nM) and VII (KIs in the range of 2.3-350 nM). Nonetheless, CAs IX and XII were the most susceptible isoforms to this class of inhibitors. In particular, compounds bearing an unsubstituted phenyl ring at the pyrazoline 3 position showed 1.3-1.5 nM KIs against CA IX. In contrast, a subset of derivatives having a 4-halo-phenyl at the same position of the aromatic scaffold even reached subnanomolar KIs against CA XII (0.62-0.99 nM). Docking studies with CA IX and XII were used to shed light on the derivative binding mode driving the preferential inhibition of the tumor-associated CAs. The identified potent and selective CA IX/XII inhibitors are of interest as leads for the development of new anticancer strategies.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas , Pirazóis/farmacologia , Antineoplásicos/química , Sítios de Ligação , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Humanos , Isoenzimas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Pirazóis/química , Relação Estrutura-Atividade
12.
J Nanobiotechnology ; 17(1): 61, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31084612

RESUMO

BACKGROUND: Protein shells assembled from viral coat proteins are an attractive platform for development of new vaccines and other tools such as targeted bioimaging and drug delivery agents. Virus-like particles (VLPs) derived from the single-stranded RNA (ssRNA) bacteriophage coat proteins (CPs) have been important and successful contenders in the area due to their simplicity and robustness. However, only a few different VLP types are available that put certain limitations on continued developments and expanded adaptation of ssRNA phage VLP technology. Metagenomic studies have been a rich source for discovering novel viral sequences, and in recent years have unraveled numerous ssRNA phage genomes significantly different from those known before. Here, we describe the use of ssRNA CP sequences found in metagenomic data to experimentally produce and characterize novel VLPs. RESULTS: Approximately 150 ssRNA phage CP sequences were sourced from metagenomic sequence data and grouped into 14 different clusters based on CP sequence similarity analysis. 110 CP-encoding sequences were obtained by gene synthesis and expressed in bacteria which in 80 cases resulted in VLP assembly. Production and purification of the VLPs was straightforward and compatible with established protocols, with the only exception that a considerable proportion of the CPs had to be produced at a lower temperature to ensure VLP assembly. The VLP morphology was similar to that of the previously studied phages, although a few deviations such as elongated or smaller particles were noted in certain cases. In addition, stabilizing inter-subunit disulfide bonds were detected in six VLPs and several possible candidate RNA structures in the phage genomes were identified that might bind to the coat protein and ensure specific RNA packaging. CONCLUSIONS: Compared to the few types of ssRNA phage VLPs that were used before, several dozens of new particles representing ten distinct similarity groups are now available with a notable potential for biotechnological applications. It is believed that the novel VLPs described in this paper will provide the groundwork for future development of new vaccines and other applications based on ssRNA bacteriophage VLPs.


Assuntos
Bacteriófagos/metabolismo , Proteínas do Capsídeo/metabolismo , RNA Viral/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Dissulfetos/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Metagenômica/métodos , Conformação Proteica , Montagem de Vírus
13.
Subcell Biochem ; 88: 281-303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900502

RESUMO

Bacteriophages of the Leviviridae family are small viruses with short single-stranded RNA (ssRNA) genomes. Protein-RNA interactions play a key role throughout the phage life cycle, and all of the conserved phage proteins - the maturation protein, the coat protein and the replicase - are able to recognize specific structures in the RNA genome. The phage-coded replicase subunit associates with several host proteins to form a catalytically active complex. Recognition of the genomic RNA by the replicase complex is achieved in a remarkably complex manner that exploits the RNA-binding properties of host proteins and the particular three-dimensional structure of the phage genome. The coat protein recognizes a hairpin structure at the beginning of the replicase gene. The binding interaction serves to regulate the expression of the replicase gene and can be remarkably different in various ssRNA phages. The maturation protein is a minor structural component of the virion that binds to the genome, mediates attachment to the host and guides the genome into the cell. The maturation protein has two distinct RNA-binding surfaces that are in contact with different regions of the genome. The maturation and coat proteins also work together to ensure the encapsidation of the phage genome in new virus particles. In this chapter, the different ssRNA phage protein-RNA interactions, as well as some of their practical applications, are discussed in detail.


Assuntos
Genoma Viral/fisiologia , Fagos RNA , RNA Viral , RNA Polimerase Dependente de RNA , Proteínas Virais , Fagos RNA/química , Fagos RNA/fisiologia , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(33): 9187-92, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27489348

RESUMO

Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Dobramento de Proteína , Prótons
15.
Molecules ; 24(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590289

RESUMO

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms and are actively involved in the regulation of a plethora of pathological and physiological conditions. A set of new coumarin/ dihydrocoumarin derivatives was here synthesized, characterized, and tested as human CA inhibitors. Their inhibitory activity was evaluated against the cytosolic human isoforms hCA I and II and the transmembrane hCA IX and hCA XII. Two compounds showed potent inhibitory activity against hCA IX, being more active or equipotent with the reference drug acetazolamide. Computational procedures were used to investigate the binding mode of this class of compounds within the active site of hCA IX and XII that are validated as anti-tumor targets.


Assuntos
Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/química , Cumarínicos/síntese química , Antígenos de Neoplasias/química , Anidrase Carbônica IX/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Domínio Catalítico , Simulação por Computador , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
17.
Bioorg Med Chem ; 26(9): 2488-2500, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29636223

RESUMO

2-Aminoquinazolin-4(3H)-ones were previously discovered as perspective leads for antimalarial drug development targeting the plasmepsins. Here we report the lead optimization studies with the aim to reduce inhibitor lipophilicity and increase selectivity versus the human aspartic protease Cathepsin D. Exploiting the solvent exposed area of the enzyme provides an option to install polar groups (R1) the 5-position of 2-aminoquinazolin-4(3H)-one to inhibitors such as carboxylic acid without scarifying enzymatic potency. Moreover, introduction of R1 substituents increased selectivity factors of compounds in this series up to 100-fold for Plm II, IV vs CatD inhibition. The introduction of flap pocket substituent (R2) at 7-postion of 2-aminoquinazolin-4(3H)-one allows to remove Ph group from THF ring without notably impairing Plm inhibitory potency. Based on these findings, inhibitors were developed, which show Plm II and IV inhibitory potency in low nanomolar range and remarkable selectivity against Cathepsin D along with decreased lipophilicity and increased solubility.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores de Proteases/química , Proteínas de Protozoários/antagonistas & inibidores , Quinazolinonas/química , Ácido Aspártico Endopeptidases/química , Sítios de Ligação , Catepsina D/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Plasmodium falciparum/enzimologia , Inibidores de Proteases/síntese química , Proteínas de Protozoários/química , Quinazolinonas/síntese química , Solubilidade , Relação Estrutura-Atividade
18.
Bioorg Chem ; 81: 311-318, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30176570

RESUMO

Twenty-four novel sulfonamide derivatives incorporating dipeptide tails were synthesized by facile acylation reactions of homosulfanilamide through benzotriazole or dicyclohexyl carbodiimide (DCC) mediated coupling reactions. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IX and hCA XII. Most of the synthesized compounds showed good in vitro carbonic anhydrase inhibitory properties, with inhibition constants in the low nanomolar range. Particularly, the new dipeptide-sulfonamide conjugates incorporating Ala, Phe and Met in the dipeptide sequence, showed the most effective inhibitory activity against to CA IX and XII.


Assuntos
Inibidores da Anidrase Carbônica/química , Dipeptídeos/química , Sulfonamidas/química , Antígenos de Neoplasias , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/síntese química , Dipeptídeos/síntese química , Humanos , Isoenzimas/antagonistas & inibidores , Sulfonamidas/síntese química
19.
Bioorg Chem ; 77: 411-419, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427856

RESUMO

In this study, new 4-[3-(aryl)-5-substitutedphenyl-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamides (19-36) were synthesized and evaluated their cytotoxic/anticancer and CA inhibitory effects. According to results obtained, the compounds 34 (4-[5-(2,3,4-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl] benzensulfonamide, Potency-Selectivity Expression (PSE) = 141) and 36 (4-[5-(3,4,5-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide, PSE = 54.5) were found the leader anticancer compounds with the highest PSE values. In CA inhibitory studies, the compounds 36 and 24 (4-[5-(3,4,5-trimethoxyphenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide) were found the leader CA inhibitors depending on selectivity ratios. The compound 36 was a selective inhibitor of hCA XII isoenzyme (hCA I/hCA XII = 1250 and hCA II/hCA XII = 224) while the compound 24 was a selective inhibitor of hCA IX isoenzyme (hCA I/hCA IX = 161 and hCA II/hCA IX = 177). The compounds 24, 34, and 36 can be considered to develop new anticancer drug candidates.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
20.
J Basic Microbiol ; 58(1): 52-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29110324

RESUMO

CntA oxygenase is a Rieske 2S-2Fe cluster-containing protein that has been previously described as able to produce trimethylamine (TMA) from carnitine, gamma-butyrobetaine, glycine betaine, and in one case, choline. TMA found in humans is exclusively of bacterial origin, and its metabolite, trimethylamine oxide (TMAO), has been associated with atherosclerosis and heart and renal failure. We isolated four different Rieske oxygenases and determined that there are no significant differences in their substrate panels. All three had high activity toward carnitine/gamma-butyrobetaine, medium activity toward glycine betaine, and very low activity toward choline. We tested the influence of low oxygen concentrations on TMA production in CntA-containing Providencia rettgeri cell cultures and discovered that this process, although dependent on the amount of oxygen, is still feasible in environments with 1 and 0.2% oxygen, which is comparable to oxygen levels in some parts of the digestive system.


Assuntos
Carnitina/metabolismo , Metilaminas/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Providencia/metabolismo , Humanos , Microbiota , Oxirredução , Oxigênio/farmacologia , Providencia/efeitos dos fármacos , Providencia/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa