Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39294470

RESUMO

Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.

2.
Glia ; 70(12): 2361-2377, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054432

RESUMO

The plastic potential of Schwann cells (SCs) is increasingly recognized to play a role after nerve injury and in diseases of the peripheral nervous system. Reports on the interaction between immune cells and SCs indicate their involvement in inflammatory processes. However, the immunocompetence of human SCs has been primarily deduced from neuropathies, but whether after nerve injury SCs directly regulate an adaptive immune response is unknown. Here, we performed comprehensive analysis of immunomodulatory capacities of human repair-related SCs (hrSCs), which recapitulate SC response to nerve injury in vitro. We used our well-established culture model of primary hrSCs from human peripheral nerves and analyzed the transcriptome, secretome, and cell surface proteins for pathways and markers relevant in innate and adaptive immunity, performed phagocytosis assays, and monitored T-cell subset activation in allogeneic co-cultures. Our findings show that hrSCs are phagocytic, which is in line with high MHCII expression. Furthermore, hrSCs express co-regulatory proteins, such as CD40, CD80, B7H3, CD58, CD86, and HVEM, release a plethora of chemoattractants, matrix remodeling proteins and pro- as well as anti-inflammatory cytokines, and upregulate the T-cell inhibiting PD-L1 molecule upon pro-inflammatory stimulation with IFNγ. In contrast to monocytes, hrSC alone are not sufficient to trigger allogenic CD4+ and CD8+ T-cells, but limit number and activation status of exogenously activated T-cells. This study demonstrates that hrSCs possess features and functions typical for professional antigen-presenting cells in vitro, and suggest a new role of these cells as negative regulators of T-cell immunity during nerve regeneration.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Células Apresentadoras de Antígenos/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fatores Quimiotáticos/metabolismo , Citocinas/metabolismo , Humanos , Regeneração Nervosa/fisiologia , Plásticos/metabolismo , Células de Schwann/metabolismo
3.
Cancer Metastasis Rev ; 40(1): 173-189, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404859

RESUMO

Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease-along with the relative paucity of recurrent somatic mutations-reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.


Assuntos
Epigenoma , Neuroblastoma , Criança , Metilação de DNA , Epigênese Genética , Histona Desacetilases/metabolismo , Humanos , Neuroblastoma/genética
4.
Cancer Sci ; 113(6): 2167-2178, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384159

RESUMO

Neuroblastoma is the most common extracranial solid tumor in children. The chromatin remodeler ATRX is frequently mutated in high-risk patients with a poor prognosis. Although many studies have reported ATRX aberrations and the associated clinical characteristics in neuroblastoma, a comprehensive overview is currently lacking. In this study, we extensively characterize the mutational spectrum of ATRX aberrations in neuroblastoma tumors reported in previous studies and present an overview of patient and tumor characteristics. We collected the data of a total of 127 neuroblastoma patients and three cell lines with ATRX aberrations originating from 20 papers. We subdivide the ATRX aberrations into nonsense, missense, and multiexon deletions (MEDs) and show that 68% of them are MEDs. Of these MEDs, 75% are predicted to be in-frame. Furthermore, we identify a missense mutational hotspot region in the helicase domain. We also confirm that all three ATRX mutation types are more often identified in patients diagnosed at an older age, but still approximately 40% of the patients are aged 5 years or younger at diagnosis. Surprisingly, we found that 11q deletions are enriched in neuroblastomas with ATRX deletions compared to a reference cohort, but not in neuroblastomas with ATRX point mutations. Taken together, our data emphasizes a distinct ATRX mutation spectrum in neuroblastoma, which should be considered when studying molecular phenotypes and therapeutic strategies.


Assuntos
Neuroblastoma , Proteína Nuclear Ligada ao X , Cromatina , DNA Helicases/genética , Humanos , Mutação , Neuroblastoma/genética , Neuroblastoma/patologia , Fenótipo , Proteína Nuclear Ligada ao X/genética
6.
Int J Cancer ; 142(2): 297-307, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28921546

RESUMO

Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of metastatic (M) stage patients present with disseminated tumor cells (DTCs) in the bone marrow (BM) at diagnosis and relapse. Although these cells represent a major obstacle in the treatment of neuroblastoma patients, insights into their expression profile remained elusive. The present RNA-Seq study of stage 4/M primary tumors, enriched BM-derived diagnostic and relapse DTCs, as well as the corresponding BM-derived mononuclear cells (MNCs) from 53 patients revealed 322 differentially expressed genes in DTCs as compared to the tumors (q < 0.001, |log2 FC|>2). Particularly, the levels of transcripts encoded by mitochondrial DNA were elevated in DTCs, whereas, for example, genes involved in angiogenesis were downregulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8 × 10-75 log2 FC > 6). Interestingly, we found the transcriptome of relapse DTCs largely resembling those of diagnostic DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log2 FC|>0.5). Notably, relapse DTCs showed a positional enrichment of 31 downregulated genes on chromosome 19, including five tumor suppressor genes: SIRT6, BBC3/PUMA, STK11, CADM4 and GLTSCR2. This first RNA-Seq analysis of neuroblastoma DTCs revealed their unique expression profile in comparison to the tumors and MNCs, and less pronounced differences between diagnostic and relapse DTCs. The latter preferentially affected downregulation of genes encoded by chromosome 19. As these alterations might be associated with treatment failure and disease relapse, further functional studies on DTCs should be considered.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Medula Óssea/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células Neoplásicas Circulantes/metabolismo , Neuroblastoma/genética , Transcriptoma , Biomarcadores Tumorais/sangue , Neoplasias da Medula Óssea/sangue , Neoplasias da Medula Óssea/secundário , Progressão da Doença , Humanos , Células Neoplásicas Circulantes/patologia , Neuroblastoma/sangue , Neuroblastoma/patologia , Prognóstico
7.
Glia ; 64(12): 2133-2153, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27545331

RESUMO

The remarkable feature of Schwann cells (SCs) to transform into a repair phenotype turned the spotlight on this powerful cell type. SCs provide the regenerative environment for axonal re-growth after peripheral nerve injury (PNI) and play a vital role in differentiation of neuroblastic tumors into a benign subtype of neuroblastoma, a tumor originating from neural crest-derived neuroblasts. Hence, understanding their mode-of-action is of utmost interest for new approaches in regenerative medicine, but also for neuroblastoma therapy. However, literature on human SCs is scarce and it is unknown to which extent human SC cultures reflect the SC repair phenotype developing after PNI in patients. We performed high-resolution proteome profiling and RNA-sequencing on highly enriched human SC and fibroblast cultures, control and ex vivo degenerated nerve explants to identify novel molecules and functional processes active in repair SCs. In fact, we found cultured SCs and degenerated nerves to share a similar repair SC-associated expression signature, including the upregulation of JUN, as well as two prominent functions, i.e., myelin debris clearance and antigen presentation via MHCII. In addition to myelin degradation, cultured SCs were capable of actively taking up cell-extrinsic components in functional phagocytosis and co-cultivation assays. Moreover, in cultured SCs and degenerated nerve tissue MHCII was upregulated at the cellular level along with high expression of chemoattractants and co-inhibitory rather than -stimulatory molecules. These results demonstrate human SC cultures to execute an inherent program of nerve repair and support two novel repair SC functions, debris clearance via phagocytosis-related mechanisms and type II immune-regulation. GLIA 2016;64:2133-2153.


Assuntos
Nervos Periféricos/citologia , Nervos Periféricos/metabolismo , Proteômica , Células de Schwann/metabolismo , Transcriptoma/fisiologia , Adolescente , Adulto , Idoso , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Feminino , Proteína GAP-43/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Regeneração Nervosa/fisiologia , Neuroblastoma , Fagocitose/fisiologia , Proteínas S100/metabolismo , Frações Subcelulares/metabolismo , Adulto Jovem
8.
Radiol Artif Intell ; 6(4): e230208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864742

RESUMO

Purpose To evaluate the reproducibility of radiomics features extracted from T2-weighted MR images in patients with neuroblastoma. Materials and Methods A retrospective study included 419 patients (mean age, 29 months ± 34 [SD]; 220 male, 199 female) with neuroblastic tumors diagnosed between 2002 and 2023, within the scope of the PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers (ie, PRIMAGE) project, involving 746 T2/T2*-weighted MRI sequences at diagnosis and/or after initial chemotherapy. Images underwent processing steps (denoising, inhomogeneity bias field correction, normalization, and resampling). Tumors were automatically segmented, and 107 shape, first-order, and second-order radiomics features were extracted, considered as the reference standard. Subsequently, the previous image processing settings were modified, and volumetric masks were applied. New radiomics features were extracted and compared with the reference standard. Reproducibility was assessed using the concordance correlation coefficient (CCC); intrasubject repeatability was measured using the coefficient of variation (CoV). Results When normalization was omitted, only 5% of the radiomics features demonstrated high reproducibility. Statistical analysis revealed significant changes in the normalization and resampling processes (P < .001). Inhomogeneities removal had the least impact on radiomics (83% of parameters remained stable). Shape features remained stable after mask modifications, with a CCC greater than 0.90. Mask modifications were the most favorable changes for achieving high CCC values, with a radiomics features stability of 70%. Only 7% of second-order radiomics features showed an excellent CoV of less than 0.10. Conclusion Modifications in the T2-weighted MRI preparation process in patients with neuroblastoma resulted in changes in radiomics features, with normalization identified as the most influential factor for reproducibility. Inhomogeneities removal had the least impact on radiomics features. Keywords: Pediatrics, MR Imaging, Oncology, Radiomics, Reproducibility, Repeatability, Neuroblastic Tumors Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Safdar and Galaria in this issue.


Assuntos
Imageamento por Ressonância Magnética , Neuroblastoma , Humanos , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/patologia , Masculino , Feminino , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Pré-Escolar , Criança , Lactente , Interpretação de Imagem Assistida por Computador/métodos , Radiômica
9.
Nat Commun ; 15(1): 1792, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413586

RESUMO

Neutrophils are evolutionarily conserved innate immune cells playing pivotal roles in host defense. Zebrafish models have contributed substantially to our understanding of neutrophil functions but similarities to human neutrophil maturation have not been systematically characterized, which limits their applicability to studying human disease. Here we show, by generating and analysing transgenic zebrafish strains representing distinct neutrophil differentiation stages, a high-resolution transcriptional profile of neutrophil maturation. We link gene expression at each stage to characteristic transcription factors, including C/ebp-ß, which is important for late neutrophil maturation. Cross-species comparison of zebrafish, mouse, and human samples confirms high molecular similarity of immature stages and discriminates zebrafish-specific from pan-species gene signatures. Applying the pan-species neutrophil maturation signature to RNA-sequencing data from human neuroblastoma patients reveals association between metastatic tumor cell infiltration in the bone marrow and an overall increase in mature neutrophils. Our detailed neutrophil maturation atlas thus provides a valuable resource for studying neutrophil function at different stages across species in health and disease.


Assuntos
Neutrófilos , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Medula Óssea/metabolismo , Perfilação da Expressão Gênica
10.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653965

RESUMO

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Assuntos
Quinase do Linfoma Anaplásico , Dibenzocicloeptenos , Farnesiltranstransferase , GTP Fosfo-Hidrolases , MicroRNAs , Neuroblastoma , Piperidinas , Inibidores de Proteínas Quinases , Piridinas , Animais , Feminino , Humanos , Camundongos , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702304

RESUMO

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Assuntos
Diferenciação Celular , Variações do Número de Cópias de DNA , Proteína Proto-Oncogênica N-Myc , Crista Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Feminino , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
12.
Cancers (Basel) ; 15(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37046647

RESUMO

Neuroblastoma is the most common extra-cranial solid tumour in children. Despite multi-modal therapy, over half of the high-risk patients will succumb. One contributing factor is the one-size-fits-all nature of multi-modal therapy. For example, during the first step (induction chemotherapy), the standard regimen (rapid COJEC) administers fixed doses of chemotherapeutic agents in eight two-week cycles. Perhaps because of differences in resistance, this standard regimen results in highly heterogeneous outcomes in different tumours. In this study, we formulated a mathematical model comprising ordinary differential equations. The equations describe the clonal evolution within a neuroblastoma tumour being treated with vincristine and cyclophosphamide, which are used in the rapid COJEC regimen, including genetically conferred and phenotypic drug resistance. The equations also describe the agents' pharmacokinetics. We devised an optimisation algorithm to find the best chemotherapy schedules for tumours with different pre-treatment clonal compositions. The optimised chemotherapy schedules exploit the cytotoxic difference between the two drugs and intra-tumoural clonal competition to shrink the tumours as much as possible during induction chemotherapy and before surgical removal. They indicate that induction chemotherapy can be improved by finding and using personalised schedules. More broadly, we propose that the overall multi-modal therapy can be enhanced by employing targeted therapies against the mutations and oncogenic pathways enriched and activated by the chemotherapeutic agents. To translate the proposed personalised multi-modal therapy into clinical use, patient-specific model calibration and treatment optimisation are necessary. This entails a decision support system informed by emerging medical technologies such as multi-region sequencing and liquid biopsies. The results and tools presented in this paper could be the foundation of this decision support system.

13.
Biochem Pharmacol ; 215: 115696, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481138

RESUMO

Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.


Assuntos
Metástase Neoplásica , Neuroblastoma , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia
14.
Nat Commun ; 14(1): 3620, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365178

RESUMO

Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.


Assuntos
Neoplasias da Medula Óssea , Neuroblastoma , Humanos , Criança , Medula Óssea/patologia , Monócitos/metabolismo , Transcriptoma , Epigenômica , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/metabolismo , Neoplasias da Medula Óssea/patologia , Neuroblastoma/metabolismo , Microambiente Tumoral/genética
15.
Cancers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900410

RESUMO

OBJECTIVES: To externally validate and assess the accuracy of a previously trained fully automatic nnU-Net CNN algorithm to identify and segment primary neuroblastoma tumors in MR images in a large children cohort. METHODS: An international multicenter, multivendor imaging repository of patients with neuroblastic tumors was used to validate the performance of a trained Machine Learning (ML) tool to identify and delineate primary neuroblastoma tumors. The dataset was heterogeneous and completely independent from the one used to train and tune the model, consisting of 300 children with neuroblastic tumors having 535 MR T2-weighted sequences (486 sequences at diagnosis and 49 after finalization of the first phase of chemotherapy). The automatic segmentation algorithm was based on a nnU-Net architecture developed within the PRIMAGE project. For comparison, the segmentation masks were manually edited by an expert radiologist, and the time for the manual editing was recorded. Different overlaps and spatial metrics were calculated to compare both masks. RESULTS: The median Dice Similarity Coefficient (DSC) was high 0.997; 0.944-1.000 (median; Q1-Q3). In 18 MR sequences (6%), the net was not able neither to identify nor segment the tumor. No differences were found regarding the MR magnetic field, type of T2 sequence, or tumor location. No significant differences in the performance of the net were found in patients with an MR performed after chemotherapy. The time for visual inspection of the generated masks was 7.9 ± 7.5 (mean ± Standard Deviation (SD)) seconds. Those cases where manual editing was needed (136 masks) required 124 ± 120 s. CONCLUSIONS: The automatic CNN was able to locate and segment the primary tumor on the T2-weighted images in 94% of cases. There was an extremely high agreement between the automatic tool and the manually edited masks. This is the first study to validate an automatic segmentation model for neuroblastic tumor identification and segmentation with body MR images. The semi-automatic approach with minor manual editing of the deep learning segmentation increases the radiologist's confidence in the solution with a minor workload for the radiologist.

16.
J Cancer Res Clin Oncol ; 148(10): 2581-2588, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34623519

RESUMO

PURPOSE: Neuroblastoma (NB) is the most frequent extracranial tumor in children. The detection of bone marrow (BM) involvement is crucial for correct staging and risk-adapted treatment. We compared three methods regarding the detection of NB involvement in BM. METHODS: Eighty-one patients with NB were included in this retrospective study. BM samples were obtained at designated time points at study entry and during treatment or follow-up. The diagnostic tools for BM analysis included cytomorphology (CM), flow cytometry (FCM) and automatic immunofluorescence plus fluorescence in situ hybridization (AIPF). RESULTS: We analyzed 369 aspirates in 81 patients in whom AIPF, CM, and FCM were simultaneously available. During the observation period, NB cells were detected in 86/369 (23.3%) cases, by CM in 32/369 (8.7%), by FCM in 52 (14.1%), and by AIPF in 72 (19.5%) samples. AIPF and/or FCM confirmed all positive results obtained in CM and detected 11 additional positive BM aspirates in 294 CM negative samples (p < 0,001). Survival of patients with BM involvement at study entry identified solely by FCM/AIPF was 17.4% versus 0% for patients in whom BM involvement was already identified by CM. CONCLUSION: The combination of AIPF/FCM yielded the highest detection rate of NB cells in BM. AIPF was the single, most sensitive method in detecting these cells. Although CM did not provide any additional positive results, it is still a useful, readily available and cost-effective tool. The prognostic significance of FCM and AIPF should be confirmed in a prospective study with a larger number of patients.


Assuntos
Medula Óssea , Neuroblastoma , Medula Óssea/patologia , Criança , Humanos , Hibridização in Situ Fluorescente/métodos , Neuroblastoma/patologia , Estudos Prospectivos , Estudos Retrospectivos
17.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954314

RESUMO

Tumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with neuroblastic tumors was performed. Dice Similarity Coefficient (DSC) and Area Under the Receiver Operating Characteristic Curve (AUC ROC) were used to compare segmentation sets. Two more metrics were elaborated to understand the direction of the errors: the modified version of False Positive (FPRm) and False Negative (FNR) rates. Two radiologists manually segmented 46 tumors and a comparative study was performed. nnU-Net was trained-tuned with 106 cases divided into five balanced folds to perform cross-validation. The five resulting models were used as an ensemble solution to measure training (n = 106) and validation (n = 26) performance, independently. The time needed by the model to automatically segment 20 cases was compared to the time required for manual segmentation. The median DSC for manual segmentation sets was 0.969 (±0.032 IQR). The median DSC for the automatic tool was 0.965 (±0.018 IQR). The automatic segmentation model achieved a better performance regarding the FPRm. MR images segmentation variability is similar between radiologists and nnU-Net. Time leverage when using the automatic model with posterior visual validation and manual adjustment corresponds to 92.8%.

18.
Sci Rep ; 12(1): 12420, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859155

RESUMO

In neuroblastoma, MYCN amplification and 11q-deletion are important, although incomplete, markers of high-risk disease. It is therefore relevant to characterize additional alterations that can function as prognostic and/or predictive markers. Using SNP-microarrays, a group of neuroblastoma patients showing amplification of one or multiple 12q loci was identified. Two loci containing CDK4 and MDM2 were commonly co-amplified, although amplification of either locus in the absence of the other was observed. Pharmacological inhibition of CDK4/6 with ribociclib or abemaciclib decreased proliferation in a broad set of neuroblastoma cell lines, including CDK4/MDM2-amplified, whereas MDM2 inhibition by Nutlin-3a was only effective in p53wild-type cells. Combined CDK4/MDM2 targeting had an additive effect in p53wild-type cell lines, while no or negative additive effect was observed in p53mutated cells. Most 12q-amplified primary tumors were of abdominal origin, including those of intrarenal origin initially suspected of being Wilms' tumor. An atypical metastatic pattern was also observed with low degree of bone marrow involvement, favoring other sites such as the lungs. Here we present detailed biological data of an aggressive neuroblastoma subgroup hallmarked by 12q amplification and atypical clinical presentation for which our in vitro studies indicate that CDK4 and/or MDM2 inhibition also could be beneficial.


Assuntos
Neuroblastoma , Proteínas Proto-Oncogênicas c-mdm2 , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Amplificação de Genes , Humanos , Neuroblastoma/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Nat Genet ; 54(10): 1527-1533, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36123406

RESUMO

Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumor growth, drug resistance and shorter survival. Currently, the impact of nonchromosomal oncogene inheritance-random identity by descent-is poorly understood. Also unclear is the impact of ecDNA on somatic variation and selection. Here integrating theoretical models of random segregation, unbiased image analysis, CRISPR-based ecDNA tagging with live-cell imaging and CRISPR-C, we demonstrate that random ecDNA inheritance results in extensive intratumoral ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted treatment. Observed ecDNAs benefit host cell survival or growth and can change within a single cell cycle. ecDNA inheritance can predict, a priori, some of the aggressive features of ecDNA-containing cancers. These properties are facilitated by the ability of ecDNA to rapidly adapt genomes in a way that is not possible through chromosomal oncogene amplification. These results show how the nonchromosomal random inheritance pattern of ecDNA contributes to poor outcomes for patients with cancer.


Assuntos
Neoplasias , Oncogenes , Evolução Biológica , DNA , Herança Extracromossômica , Humanos , Neoplasias/genética , Neoplasias/patologia
20.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34971569

RESUMO

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Assuntos
Glipicanas/imunologia , Imunoterapia Adotiva , Neuroblastoma/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Glipicanas/metabolismo , Humanos , Imunoterapia/métodos , Neuroblastoma/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa