Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Mol Recognit ; 36(6): e3012, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36987702

RESUMO

Vinculin is an integral component of integrin adhesions, where it functions as a molecular clutch coupling intracellular contraction to the extracellular matrix. Quantitating its contribution to the reinforcement of newly forming adhesions, however, requires ultrasensitive cell force assays covering short time and low force ranges. Here, we have combined atomic force microscopy-based single-cell force spectroscopy (SCFS) and optical tweezers force spectroscopy to investigate the role of vinculin in reinforcement of individual nascent adhesions during the first 5 min of cell contact with fibronectin or vitronectin. At minimal adhesion times (5-10 s), mouse embryonic fibroblast (MEF) wildtype (wt) and vinculin knock-out (vin(-/-) ) cells develop comparable adhesion forces on the scale of several individual integrin-ligand bonds, confirming that vinculin is dispensable for adhesion initiation. In contrast, after 60 to 120 s, adhesion strength and traction reinforce quickly in wt cells, while remaining low in vin(-/-) cells. Re-expression of full-length vinculin or a constitutively active vinculin mutant (vinT12) in MEF vin(-/-) cells restored adhesion and traction with the same efficiency, while vinculin with a mutated talin-binding head region (vinA50I) or missing the actin-binding tail-domain (vin880) was ineffective. Integrating total internal reflection fluorescence imaging into the SCFS setup furthermore enabled us to correlate vinculin-green fluorescent protein (GFP) recruitment to nascent adhesion sites with the built-up of vinculin-dependent adhesion forces directly. Vinculin recruitment and cell adhesion reinforcement followed synchronous biphasic patterns, suggesting vinculin recruitment, but not activation, as the rate-limiting step for adhesion reinforcement. Combining sensitive SCFS with fluorescence microscopy thus provides insight into the temporal sequence of vinculin-dependent mechanical reinforcement in nascent integrin adhesions.


Assuntos
Fibroblastos , Adesões Focais , Animais , Camundongos , Adesão Celular/fisiologia , Fibroblastos/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Talina/genética , Talina/química , Talina/metabolismo , Vinculina/genética , Vinculina/química , Vinculina/metabolismo
2.
Nat Methods ; 17(6): 595-599, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451476

RESUMO

Although label-free cell sorting is desirable for providing pristine cells for further analysis or use, current approaches lack molecular specificity and speed. Here, we combine real-time fluorescence and deformability cytometry with sorting based on standing surface acoustic waves and transfer molecular specificity to image-based sorting using an efficient deep neural network. In addition to general performance, we demonstrate the utility of this method by sorting neutrophils from whole blood without labels.


Assuntos
Citometria de Fluxo/métodos , Microfluídica/métodos , Redes Neurais de Computação , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Drosophila/citologia , Deformação Eritrocítica , Eritrócitos/citologia , Células HL-60 , Humanos , Células Mieloides/citologia , Neutrófilos/citologia , Som
3.
Soft Matter ; 17(4): 853-862, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33232425

RESUMO

Biophysical properties of cells such as intracellular mass density and cell mechanics are known to be involved in a wide range of homeostatic functions and pathological alterations. An optical readout that can be used to quantify such properties is the refractive index (RI) distribution. It has been recently reported that the nucleus, initially presumed to be the organelle with the highest dry mass density (ρ) within the cell, has in fact a lower RI and ρ than its surrounding cytoplasm. These studies have either been conducted in suspended cells, or cells adhered on 2D substrates, neither of which reflects the situation in vivo where cells are surrounded by the extracellular matrix (ECM). To better approximate the 3D situation, we encapsulated cells in 3D covalently-crosslinked alginate hydrogels with varying stiffness, and imaged the 3D RI distribution of cells, using a combined optical diffraction tomography (ODT)-epifluorescence microscope. Unexpectedly, the nuclei of cells in 3D displayed a higher ρ than the cytoplasm, in contrast to 2D cultures. Using a Brillouin-epifluorescence microscope we subsequently showed that in addition to higher ρ, the nuclei also had a higher longitudinal modulus (M) and viscosity (η) compared to the cytoplasm. Furthermore, increasing the stiffness of the hydrogel resulted in higher M for both the nuclei and cytoplasm of cells in stiff 3D alginate compared to cells in compliant 3D alginate. The ability to quantify intracellular biophysical properties with non-invasive techniques will improve our understanding of biological processes such as dormancy, apoptosis, cell growth or stem cell differentiation.


Assuntos
Matriz Extracelular , Hidrogéis , Alginatos , Diferenciação Celular , Proliferação de Células
4.
Biophys J ; 118(2): 448-463, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31870536

RESUMO

Severe injury to the mammalian spinal cord results in permanent loss of function due to the formation of a glial-fibrotic scar. Both the chemical composition and the mechanical properties of the scar tissue have been implicated to inhibit neuronal regrowth and functional recovery. By contrast, adult zebrafish are able to repair spinal cord tissue and restore motor function after complete spinal cord transection owing to a complex cellular response that includes axon regrowth and is accompanied by neurogenesis. The mechanical mechanisms contributing to successful spinal cord repair in adult zebrafish are, however, currently unknown. Here, we employ atomic force microscopy-enabled nanoindentation to determine the spatial distributions of apparent elastic moduli of living spinal cord tissue sections obtained from uninjured zebrafish and at distinct time points after complete spinal cord transection. In uninjured specimens, spinal gray matter regions were stiffer than white matter regions. During regeneration after transection, the spinal cord tissues displayed a significant increase of the respective apparent elastic moduli that transiently obliterated the mechanical difference between the two types of matter before returning to baseline values after the completion of repair. Tissue stiffness correlated variably with cell number density, oligodendrocyte interconnectivity, axonal orientation, and vascularization. This work constitutes the first quantitative mapping of the spatiotemporal changes of spinal cord tissue stiffness in regenerating adult zebrafish and provides the tissue mechanical basis for future studies into the role of mechanosensing in spinal cord repair.


Assuntos
Fenômenos Mecânicos , Medula Espinal/citologia , Medula Espinal/fisiologia , Peixe-Zebra , Animais , Fenômenos Biomecânicos , Regeneração da Medula Espinal
5.
Development ; 144(23): 4313-4321, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183942

RESUMO

Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Antígeno CD24/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/classificação , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Antígenos CD15/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/classificação , Fenótipo , Análise de Célula Única
6.
BMC Bioinformatics ; 20(1): 465, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500563

RESUMO

BACKGROUND: Atomic force microscopy (AFM) allows the mechanical characterization of single cells and live tissue by quantifying force-distance (FD) data in nano-indentation experiments. One of the main problems when dealing with biological tissue is the fact that the measured FD curves can be disturbed. These disturbances are caused, for instance, by passive cell movement, adhesive forces between the AFM probe and the cell, or insufficient attachment of the tissue to the supporting cover slide. In practice, the resulting artifacts are easily spotted by an experimenter who then manually sorts out curves before proceeding with data evaluation. However, this manual sorting step becomes increasingly cumbersome for studies that involve numerous measurements or for quantitative imaging based on FD maps. RESULTS: We introduce the Python package nanite, which automates all basic aspects of FD data analysis, including data import, tip-sample separation, base line correction, contact point retrieval, and model fitting. In addition, nanite enables the automation of the sorting step using supervised learning. This learning approach relates subjective ratings to predefined features extracted from FD curves. For ratings ranging from 0 to 10, our approach achieves a mean squared error below 1.0 rating points and a classification accuracy between good and poor curves that is above 87%. We showcase our approach by quantifying Young's moduli of the zebrafish spinal cord at different classification thresholds and by introducing data quality as a new dimension for quantitative AFM image analysis. CONCLUSION: The addition of quality-based sorting using supervised learning enables a fully automated and reproducible FD data analysis pipeline for biological samples in AFM.


Assuntos
Confiabilidade dos Dados , Aprendizado de Máquina , Microscopia de Força Atômica , Software , Animais , Automação , Nanotecnologia , Peixe-Zebra
7.
Soft Matter ; 19(4): 586-587, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36648177

Assuntos
Neoplasias , Humanos
8.
Biophys J ; 109(10): 2023-36, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588562

RESUMO

Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible.


Assuntos
Separação Celular/métodos , Forma Celular , Microfluídica/métodos , Linhagem Celular Tumoral , Elasticidade , Humanos , Modelos Teóricos , Estresse Mecânico
9.
Cancer Metastasis Rev ; 33(2-3): 721-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24771149

RESUMO

Bone metastasis is a complication that occurs in 80 % of women with advanced breast cancer. Despite the prevalence of bone metastatic disease, the avenues for its clinical management are still restricted to palliative treatment options. In fact, the underlying mechanisms of breast cancer osteotropism have not yet been fully elucidated due to a lack of suitable in vivo models that are able to recapitulate the human disease. In this work, we review the current transplantation-based models to investigate breast cancer-induced bone metastasis and delineate the strengths and limitations of the use of different grafting techniques, tissue sources, and hosts. We further show that humanized xenograft models incorporating human cells or tissue grafts at the primary tumor site or the metastatic site mimic more closely the human disease. Tissue-engineered constructs are emerging as a reproducible alternative to recapitulate functional humanized tissues in these murine models. The development of advanced humanized animal models may provide better platforms to investigate the mutual interactions between human cancer cells and their microenvironment and ultimately improve the translation of preclinical drug trials to the clinic.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Animais , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Isoenxertos , Transplante de Neoplasias
10.
Cancer Metastasis Rev ; 32(1-2): 129-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23657538

RESUMO

The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Especificidade da Espécie
11.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466184

RESUMO

Here, we report the first characterization of the effects resulting from the manipulation of Soluble-Lamin Associated Protein (SLAP) expression during mammalian brain development. We found that SLAP localizes to the nuclear envelope and when overexpressed causes changes in nuclear morphology and lengthening of mitosis. SLAP overexpression in apical progenitors of the developing mouse brain altered asymmetric cell division, neurogenic commitment and neuronal migration ultimately resulting in unbalance in the proportion of upper, relative to deeper, neuronal layers. Several of these effects were also recapitulated upon Cas9-mediated knockdown. Ultimately, SLAP overexpression during development resulted in a reduction in subcortical projections of young mice and, notably, reduced their exploratory behavior. Our study shows the potential relevance of the previously uncharacterized nuclear envelope protein SLAP in neurodevelopmental disorders.


Assuntos
Comportamento Exploratório , Membrana Nuclear , Animais , Camundongos , Encéfalo , Laminas , Mamíferos , Proteínas de Membrana/genética
12.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760173

RESUMO

Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis. Orthotopic, ectopic, and short-term tail vein injection mouse breast and lung cancer models revealed a strong positive dependence of lung and bone metastasis on SWAP-70. Breast cancer cell growth, migration, adhesion, and invasion assays revealed SWAP-70's key role in these metastasis-related cell features and the requirement for SWAP-70 to bind F-actin. Biophysical experiments showed that tumor cell stiffness and deformability are negatively modulated by SWAP-70. Together, we present a hitherto undescribed, unique F-actin modulator as an important contributor to tumor metastasis.


Assuntos
Actinas , Neoplasias da Mama , Neoplasias Pulmonares , Proteínas dos Microfilamentos , Metástase Neoplásica , Animais , Actinas/metabolismo , Camundongos , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Movimento Celular/genética , Citoesqueleto de Actina/metabolismo , Proliferação de Células/genética , Adesão Celular/genética , Ligação Proteica
13.
Adv Healthc Mater ; 12(14): e2202514, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826799

RESUMO

Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.


Assuntos
Hidrogéis , Neoplasias , Matriz Extracelular , Microambiente Celular , Microambiente Tumoral , Biofísica
14.
Sci Rep ; 12(1): 10325, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725987

RESUMO

Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.


Assuntos
Diabetes Mellitus Experimental , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Lipídeos , Camundongos , Obesidade/metabolismo
15.
Elife ; 112022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35001870

RESUMO

Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample - a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.


Assuntos
Células/citologia , Fluorescência , Espaço Intracelular , Microscopia/métodos , Tomografia Óptica/métodos , Núcleo Celular , Células/ultraestrutura , Células HeLa , Humanos , Refratometria
16.
Cancers (Basel) ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35158871

RESUMO

Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.

17.
Nat Commun ; 12(1): 1756, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767161

RESUMO

The levels of nuclear protein Lamin A/C are crucial for nuclear mechanotransduction. Lamin A/C levels are known to scale with tissue stiffness and extracellular matrix levels in mesenchymal tissues. But in epithelial tissues, where cells lack a strong interaction with the extracellular matrix, it is unclear how Lamin A/C is regulated. Here, we show in epithelial tissues that Lamin A/C levels scale with apico-basal cell compression, independent of tissue stiffness. Using genetic perturbations in Drosophila epithelial tissues, we show that apico-basal cell compression regulates the levels of Lamin A/C by deforming the nucleus. Further, in mammalian epithelial cells, we show that nuclear deformation regulates Lamin A/C levels by modulating the levels of phosphorylation of Lamin A/C at Serine 22, a target for Lamin A/C degradation. Taken together, our results reveal a mechanism of Lamin A/C regulation which could provide key insights for understanding nuclear mechanotransduction in epithelial tissues.


Assuntos
Núcleo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Lamina Tipo A/metabolismo , Laminas/metabolismo , Mecanotransdução Celular/fisiologia , Estresse Mecânico , Animais , Linhagem Celular , Cães , Drosophila , Proteínas de Drosophila/genética , Epitélio/metabolismo , Lamina Tipo A/genética , Laminas/genética , Células Madin Darby de Rim Canino , Fosforilação
18.
Front Cell Dev Biol ; 9: 639815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855019

RESUMO

Immune cells process a myriad of biochemical signals but their function and behavior are also determined by mechanical cues. Macrophages are no exception to this. Being present in all types of tissues, macrophages are exposed to environments of varying stiffness, which can be further altered under pathological conditions. While it is becoming increasingly clear that macrophages are mechanosensitive, it remains poorly understood how mechanical cues modulate their inflammatory response. Here we report that substrate stiffness influences the expression of pro-inflammatory genes and the formation of the NLRP3 inflammasome, leading to changes in the secreted protein levels of the cytokines IL-1ß and IL-6. Using polyacrylamide hydrogels of tunable elastic moduli between 0.2 and 33.1 kPa, we found that bone marrow-derived macrophages adopted a less spread and rounder morphology on compliant compared to stiff substrates. Upon LPS priming, the expression levels of the gene encoding for TNF-α were higher on more compliant hydrogels. When additionally stimulating macrophages with the ionophore nigericin, we observed an enhanced formation of the NLRP3 inflammasome, increased levels of cell death, and higher secreted protein levels of IL-1ß and IL-6 on compliant substrates. The upregulation of inflammasome formation on compliant substrates was not primarily attributed to the decreased cell spreading, since spatially confining cells on micropatterns led to a reduction of inflammasome-positive cells compared to well-spread cells. Finally, interfering with actomyosin contractility diminished the differences in inflammasome formation between compliant and stiff substrates. In summary, we show that substrate stiffness modulates the pro-inflammatory response of macrophages, that the NLRP3 inflammasome is one of the components affected by macrophage mechanosensing, and a role for actomyosin contractility in this mechanosensory response. Thus, our results contribute to a better understanding of how microenvironment stiffness affects macrophage behavior, which might be relevant in diseases where tissue stiffness is altered and might potentially provide a basis for new strategies to modulate inflammatory responses.

19.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771711

RESUMO

Altered biophysical properties of cancer cells and of their microenvironment contribute to cancer progression. While the relationship between microenvironmental stiffness and cancer cell mechanical properties and responses has been previously studied using two-dimensional (2D) systems, much less is known about it in a physiologically more relevant 3D context and in particular for multicellular systems. To investigate the influence of microenvironment stiffness on tumor spheroid mechanics, we first generated MCF-7 tumor spheroids within matrix metalloproteinase (MMP)-degradable 3D polyethylene glycol (PEG)-heparin hydrogels, where spheroids showed reduced growth in stiffer hydrogels. We then quantitatively mapped the mechanical properties of tumor spheroids in situ using Brillouin microscopy. Maps acquired for tumor spheroids grown within stiff hydrogels showed elevated Brillouin frequency shifts (hence increased longitudinal elastic moduli) with increasing hydrogel stiffness. Maps furthermore revealed spatial variations of the mechanical properties across the spheroids' cross-sections. When hydrogel degradability was blocked, comparable Brillouin frequency shifts of the MCF-7 spheroids were found in both compliant and stiff hydrogels, along with similar levels of growth-induced compressive stress. Under low compressive stress, single cells or free multicellular aggregates showed consistently lower Brillouin frequency shifts compared to spheroids growing within hydrogels. Thus, the spheroids' mechanical properties were modulated by matrix stiffness and degradability as well as multicellularity, and also to the associated level of compressive stress felt by tumor spheroids. Spheroids generated from a panel of invasive breast, prostate and pancreatic cancer cell lines within degradable stiff hydrogels, showed higher Brillouin frequency shifts and less cell invasion compared to those in compliant hydrogels. Taken together, our findings contribute to a better understanding of the interplay between cancer cells and microenvironment mechanics and degradability, which is relevant to better understand cancer progression.

20.
Dev Cell ; 9(4): 555-64, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16198297

RESUMO

Wnt11 plays a central role in tissue morphogenesis during vertebrate gastrulation, but the molecular and cellular mechanisms by which Wnt11 exerts its effects remain poorly understood. Here, we show that Wnt11 functions during zebrafish gastrulation by regulating the cohesion of mesodermal and endodermal (mesendodermal) progenitor cells. Importantly, we demonstrate that Wnt11 activity in this process is mediated by the GTPase Rab5, a key regulator of early endocytosis, as blocking Rab5c activity in wild-type embryos phenocopies slb/wnt11 mutants, and enhancing Rab5c activity in slb/wnt11 mutant embryos rescues the mutant phenotype. In addition, we find that Wnt11 and Rab5c control the endocytosis of E-cadherin and are required in mesendodermal cells for E-cadherin-mediated cell cohesion. Together, our results suggest that Wnt11 controls tissue morphogenesis by modulating E-cadherin-mediated cell cohesion through Rab5c, a novel mechanism of Wnt signaling in gastrulation.


Assuntos
Caderinas/metabolismo , Gástrula/fisiologia , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Caderinas/genética , Adesão Celular , Movimento Celular/fisiologia , Endocitose/fisiologia , Gástrula/citologia , Morfogênese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Peixe-Zebra/anatomia & histologia , Proteínas de Peixe-Zebra/genética , Proteínas rab5 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa