Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(23)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731113

RESUMO

The voyage of semiconductor industry to decrease the size of transistors to achieve superior device performance seems to near its physical dimensional limitations. The quest is on to explore emerging material systems that offer dimensional scaling to match the silicon- based technologies. The discovery of atomic flat two-dimensional materials has opened up a completely new avenue to fabricate transistors at sub-10 nanometer level which has the potential to compete with modern silicon-based semiconductor devices. Molybdenum disulfide (MoS2) is a two-dimensional layered material with novel semiconducting properties at atomic level seems like a promising candidate that can possibly meet the expectation of Moore's law. This review discusses the various 'fabrication challenges' in making MoS2based electronic devices from start to finish. The review outlines the intricate challenges of substrate selection and various synthesis methods of mono layer and few-layer MoS2. The review focuses on the various techniques and methods to minimize interface defect density at substrate/MoS2interface for optimum MoS2-based device performance. The tunable band-gap of MoS2with varying thickness presents a unique opportunity for contact engineering to mitigate the contact resistance issue using different elemental metals. In this work, we present a comprehensive overview of different types of contact materials with myriad geometries that show a profound impact on device performance. The choice of different insulating/dielectric gate oxides on MoS2in co-planar and vertical geometry is critically reviewed and the physical feasibility of the same is discussed. The experimental constraints of different encapsulation techniques on MoS2and its effect on structural and electronic properties are extensively discussed.

2.
IEEE Trans Nanobioscience ; 22(1): 174-181, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507608

RESUMO

The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as 1×10 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.


Assuntos
Técnicas Biossensoriais , Nanotubos , Transistores Eletrônicos , Nanotubos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa