RESUMO
Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Ductos Biliares Intra-Hepáticos/metabolismo , Diarreia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/químicaRESUMO
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.
Assuntos
Microcefalia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células HEK293 , Serina-Treonina Quinases TORRESUMO
Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder characterized by progressive cerebellar degeneration that is typically diagnosed in early childhood. A-T is associated with a predisposition to malignancies, particularly lymphoid tumors in childhood and early adulthood. An adolescent girl with minimal neurologic symptoms was diagnosed with A-T 8 years after completing therapy for T-cell acute lymphoblastic leukemia, following a diagnosis of ATM-mutated breast cancer in her mother. We highlight the importance of recognizing ATM mutations in T-cell acute lymphoblastic leukemia, appreciating the phenotypic heterogeneity of A-T, and defining optimal cancer screening in A-T patients.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxia Telangiectasia/diagnóstico , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/complicações , Adolescente , Adulto , Ataxia Telangiectasia/etiologia , Terapia Combinada , Feminino , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Prognóstico , Estudos RetrospectivosRESUMO
BACKGROUND: Ataxia telangiectasia (A-T) is a neurodegenerative disorder. While patients with classic A-T generally die in their 20s, some patients with variant A-T, who have residual ataxia-telangiectasia mutated (ATM) kinase activity, have a milder phenotype. We noticed two commonly occurring ATM mutations that appeared to be associated with prolonged survival and decided to study patients carrying one of these mutations. METHODS: Data were retrospectively collected from the Dutch, Italian, German and French A-T cohorts. To supplement these data, we searched the literature for patients with identical genotypes. RESULTS: This study included 35 patients who were homozygous or compound heterozygous for the ATM c.3576G>A; p.(Ser1135_Lys1192del58) mutation and 24 patients who were compound heterozygous for the ATM c.8147T>C; p.(Val2716Ala) mutation. Compared with 51 patients with classic A-T from the Dutch cohort, patients with ATM c.3576G>A had a longer survival and were less likely to develop cancer, respiratory disease or immunodeficiency. This was also true for patients with ATM c.8147T>C, who additionally became wheelchair users later in life and had fewer telangiectasias. The oldest patient with A-T reported so far was a 78-year-old patient who was compound heterozygous for ATM c.8147T>C. ATM kinase activity was demonstrated in cells from all patients tested with the ATM c.8147T>C mutant protein and only at a low level in some patients with ATM c.3576G>A. CONCLUSION: Compared with classic A-T, the presence of ATM c.3576G>A results in a milder classic phenotype. Patients with ATM c.8147T>C have a variant phenotype with prolonged survival, which in exceptional cases may approach a near-normal lifespan.
Assuntos
Alelos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Estudos de Associação Genética , Genótipo , Mutação , Fenótipo , Ataxia Telangiectasia/mortalidade , Humanos , Prognóstico , Sítios de Splice de RNA , Deleção de Sequência , Índice de Gravidade de DoençaRESUMO
Ataxia-telangiectasia (AT) is a neurodegenerative disorder characterized by ataxia, telangiectasia, and immunodeficiency. An increased risk of malignancies and respiratory diseases dramatically reduce life expectancy. To better counsel families, develop individual follow-up programs, and select patients for therapeutic trials, more knowledge is needed on factors influencing survival. This retrospective cohort study of 61 AT patients shows that classical AT patients had a shorter survival than variant patients (HR 5.9, 95%CI 2.0-17.7), especially once a malignancy was diagnosed (HR 2.5, 95%CI 1.1-5.5, compared to classical AT patients without malignancy). Patients with the hyper IgM phenotype with hypogammaglobulinemia (AT-HIGM) and patients with an IgG2 deficiency showed decreased survival compared to patients with normal IgG (HR 9.2, 95%CI 3.2-26.5) and patients with normal IgG2 levels (HR 7.8, 95%CI 1.7-36.2), respectively. If high risk treatment trials will become available for AT, those patients with factors indicating the poorest prognosis might be considered for inclusion first.
Assuntos
Agamaglobulinemia/imunologia , Ataxia Telangiectasia/imunologia , Síndrome de Imunodeficiência com Hiper-IgM/imunologia , Imunoglobulina G/imunologia , Adolescente , Adulto , Agamaglobulinemia/complicações , Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/mortalidade , Proteínas Mutadas de Ataxia Telangiectasia/genética , Causas de Morte , Criança , Estudos de Coortes , Feminino , Humanos , Síndrome de Imunodeficiência com Hiper-IgM/complicações , Deficiência de IgA/complicações , Deficiência de IgA/imunologia , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/imunologia , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/etiologia , Neoplasias/genética , Razão de Chances , Fenótipo , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Taxa de Sobrevida , Adulto JovemRESUMO
Bromodomain-containing protein 9 (BRD9), an epigenetic "reader" of acetylated lysines on post-translationally modified histone proteins, is upregulated in multiple cancer cell lines. To assess the functional role of BRD9 in cancer cell lines, we identified a small-molecule inhibitor of the BRD9 bromodomain. Starting from a pyrrolopyridone lead, we used structure-based drug design to identify a potent and highly selective in vitro tool compound 11, (GNE-375). While this compound showed minimal effects in cell viability or gene expression assays, it showed remarkable potency in preventing the emergence of a drug tolerant population in EGFR mutant PC9 cells treated with EGFR inhibitors. Such tolerance has been linked to an altered epigenetic state, and 11 decreased BRD9 binding to chromatin, and this was associated with decreased expression of ALDH1A1, a gene previously shown to be important in drug tolerance. BRD9 inhibitors may therefore show utility in preventing epigenetically-defined drug resistance.
Assuntos
Resistência a Medicamentos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Linhagem Celular Tumoral , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Piridonas/química , Piridonas/farmacologia , Retinal Desidrogenase , Fatores de Transcrição/metabolismoRESUMO
In this report we detail the evolution of our previously reported thiophene isoxazole BET inhibitor chemotype exemplified by CPI-3 to a novel bromodomain selective chemotype (the methyl isoxazoleazepine chemotype) exemplified by carboxamide 23. The methyl isoxazoleazepine chemotype provides potent inhibition of the bromodomains of the BET family, excellent in vivo PK across species, low unbound clearance, and target engagement in a MYC PK-PD model.
Assuntos
Azepinas/farmacologia , Desenho de Fármacos , Proteínas Nucleares/antagonistas & inibidores , Oxazóis/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Azepinas/síntese química , Azepinas/química , Proteínas de Ciclo Celular , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Relação Estrutura-AtividadeRESUMO
Oncogenic activation of fibroblast growth factor receptor 2 (FGFR2) drives multiple cancers and represents a broad therapeutic opportunity, yet selective targeting of FGFR2 has not been achieved. Although the clinical efficacy of pan-FGFR inhibitors (pan-FGFRi) validates FGFR2 driver status in FGFR2 fusion-positive intrahepatic cholangiocarcinoma, their benefit is limited by incomplete target coverage due to FGFR1- and FGFR4-mediated toxicities (hyperphosphatemia and diarrhea, respectively) and the emergence of FGFR2 resistance mutations. RLY-4008 is a highly selective, irreversible FGFR2 inhibitor designed to overcome these limitations. In vitro, RLY-4008 demonstrates >250- and >5,000-fold selectivity over FGFR1 and FGFR4, respectively, and targets primary alterations and resistance mutations. In vivo, RLY-4008 induces regression in multiple xenograft models-including models with FGFR2 resistance mutations that drive clinical progression on current pan-FGFRi-while sparing FGFR1 and FGFR4. In early clinical testing, RLY-4008 induced responses without clinically significant off-isoform FGFR toxicities, confirming the broad therapeutic potential of selective FGFR2 targeting. SIGNIFICANCE: Patients with FGFR2-driven cancers derive limited benefit from pan-FGFRi due to multiple FGFR1-4-mediated toxicities and acquired FGFR2 resistance mutations. RLY-4008 is a highly selective FGFR2 inhibitor that targets primary alterations and resistance mutations and induces tumor regression while sparing other FGFRs, suggesting it may have broad therapeutic potential. See related commentary by Tripathi et al., p. 1964. This article is featured in Selected Articles from This Issue, p. 1949.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Mutação , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/metabolismo , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Protein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of GDC-1971 (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.
RESUMO
Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins. We report here the discovery of a class of such inhibitors targeting the family VIII bromodomains of SMARCA2 (BRM) and SMARCA4 (BRG1), and PBRM1 (polybromo-1) bromodomain 5. We propose one example from this series, GNE-064, as a chemical probe for the bromodomains SMARCA2, SMARCA4, and PBRM1(5) with the potential for in vivo use.
Assuntos
DNA Helicases , Fatores de Transcrição , Proteínas de Ligação a DNA , Humanos , Proteínas Nucleares , Domínios ProteicosRESUMO
The first International Workshop of the ATM and Cancer Risk group focusing on the role of Ataxia-Telangiectasia Mutated (ATM) gene in cancer was held on December 4 and 5, 2019 at Institut Curie in Paris, France. It was motivated by the fact that germline ATM pathogenic variants have been found to be associated with different cancer types. However, due to the lack of precise age-, sex-, and site-specific risk estimates, no consensus on management guidelines for variant carriers exists, and the clinical utility of ATM variant testing is uncertain. The meeting brought together epidemiologists, geneticists, biologists and clinicians to review current knowledge and on-going challenges related to ATM and cancer risk. This report summarizes the meeting sessions content that covered the latest results in family-based and population-based studies, the importance of accurate variant classification, the effect of radiation exposures for ATM variant carriers, and the characteristics of ATM-deficient tumors. The report concludes that ATM variant carriers outside of the context of Ataxia-Telangiectasia may benefit from effective cancer risk management and therapeutic strategies and that efforts to set up large-scale studies in the international framework to achieve this goal are necessary.
Assuntos
Ataxia Telangiectasia , Neoplasias da Mama , Neoplasias , Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias da Mama/complicações , Feminino , França , Predisposição Genética para Doença , Heterozigoto , Humanos , Neoplasias/diagnóstico , Neoplasias/genéticaRESUMO
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
Assuntos
Proteínas de Ciclo Celular , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microcefalia/genética , Reparo do DNA/genética , Cromossomos/metabolismo , Instabilidade Genômica , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Cromossômicas não Histona/metabolismoRESUMO
OBJECTIVE: Patients with classic ataxia-telangiectasia (A-T) generally die in the second or third decade of life. Clinical descriptions of A-T tend to focus on the symptoms at presentation. However, during the course of the disease, other symptoms and complications emerge. As long-term survivors with classic A-T develop a complex multisystem disorder with a largely unknown extent and severity, we aimed to comprehensively assess their full clinical picture. METHODS: Data from Dutch patients with classic A-T above the age of 30 years were retrospectively collected. In addition, we searched the literature for descriptions of classic A-T patients who survived beyond the age of 30 years. RESULTS: In the Dutch cohort, seven classic A-T patients survived beyond 30 years of age. Fourteen additional patients were retrieved by the literature search. Common problems in older patients with classic A-T were linked to ageing. Most patients had pulmonary, endocrine, cardiovascular, and gastro-intestinal problems. All patients had a tetraparesis with contractures. This led to immobilization and frequent hospital admissions. Most patients expressed the wish to no longer undergo intensive medical treatments, and waived follow-up programs. CONCLUSIONS: Paucity of descriptions in the literature, and withdrawal from medical care complicate the acquisition of follow-up data on the natural history of long-term survivors. Irrespective of these limitations, we have obtained impression of the many problems that these patients face when surviving beyond 30 years of age. Awareness of these problems is needed to guide follow-up, counselling, and (palliative) care; decisions about life-prolonging treatments should be well considered.
Assuntos
Ataxia Telangiectasia , Sobreviventes , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo , Estudos RetrospectivosRESUMO
The enantioselective alpha-arylation and alpha-vinylation of oxindoles catalyzed by Pd and a biarylmonophosphine ligand with both axial and phosphorus-based chirogenicity is reported. The resultant quaternary carbon stereocenters are formed in high enantiomeric excess, and the conditions tolerate a range of substitution on both the oxindole and the aryl/vinyl coupling partners.
Assuntos
Indóis/química , Indóis/síntese química , Compostos Organometálicos/química , Paládio/química , Catálise , Ligantes , Estrutura Molecular , EstereoisomerismoRESUMO
The sirtuin proteins are broadly conserved NAD(+)-dependent deacetylases that are implicated in diverse biological processes including DNA recombination and repair, transcriptional silencing, longevity, apoptosis, axonal protection, insulin signaling, and fat mobilization. Because of these associations, the identification of small molecule sirtuin modulators has been of significant interest. Here we report on high throughput screening against the yeast sirtuin, Hst2, leading to the identification of four unique inhibitor scaffolds that also inhibit the human sirtuins, SIRT1-3, and are able to inhibit telomeric silencing of yeast Sir2 in vivo. The identified inhibitor scaffolds range in potency from IC(50) values of 6.5-130 microM against Hst2. Each of the inhibitor scaffolds binds reversibly to the enzyme, and kinetic analysis reveals that each of the inhibitors is non-competitive with respect to both acetyl-lysine and NAD(+) binding. Limited SAR analysis of the scaffolds also identifies which functional groups may be important for inhibition. These sirtuin inhibitors are low molecular weight and well-suited for lead molecule optimization, making them useful chemical probes to study the mechanism and biological roles of sirtuins and potential starting points for optimization into therapeutics.
Assuntos
Fator 6 de Crescimento de Fibroblastos/antagonistas & inibidores , Sirtuínas/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/isolamento & purificação , Proteínas Fúngicas , Humanos , Concentração Inibidora 50 , Cinética , Relação Estrutura-AtividadeRESUMO
The efficient synthesis of small molecules that collectively comprise optimal small-molecule screening collections is an important goal. With this in mind, we have used N-alkyl aziridines in a regio- and stereochemically controlled synthesis of polycyclic heterocycles based on nucleophilic ring opening and subsequent intramolecular cyclization.
RESUMO
Background: Ataxias represent a challenging group of disorders due to significant clinical overlap. Here, we present a patient with early-onset progressive ataxia, polyneuropathy and discuss how elevation of alpha fetoprotein (AFP) narrows the differential diagnosis. Case report: Ataxia, polyneuropathy, and mild elevation of AFP are features compatible with ataxia with oculomotor apraxia type 2 (AOA2) but also with ataxia with oculomotor apraxia type 4 (AOA4). A genetic analysis demonstrated biallelic mutations in senataxin (SETX), confirming the diagnosis of AOA2. Discussion: Mild elevation of AFP is found in patients with AOA2 and AOA4, and higher levels are commonly seen in ataxia-telangiectasia. AFP is a useful diagnostic tool but not a biomarker for disease progression in AOA2.
Assuntos
Ataxia Cerebelar/sangue , Ataxia Cerebelar/diagnóstico por imagem , Progressão da Doença , alfa-Fetoproteínas/metabolismo , Adulto , Biomarcadores/sangue , Ataxia Cerebelar/genética , Feminino , Humanos , alfa-Fetoproteínas/genéticaRESUMO
OBJECTIVE: To describe and classify the neurologic trajectories in patients with mild neurologic forms of ataxia telangiectasia (A-T) from the Dutch A-T cohort, combined with patients reported in the literature. METHODS: Clinical, genetic, and laboratory data of 14 patients with mild neurologic phenotypes of A-T from the Dutch cohort were analyzed and combined with corresponding data from the literature. A mild neurologic phenotype was defined by a later onset, nonataxia presenting or dominant feature, or slower progression compared to the classic A-T phenotype. Neurologic trajectories were classified based on age at onset, presenting feature, and follow-up data. RESULTS: One hundred five patients were included in the study. Neurologic trajectories were categorized into 6 groups: patients with childhood-onset extrapyramidal (EP) features with cerebellar symptoms developing later (group 1; 18 patients), childhood-onset cerebellar symptoms, with EP features developing later (group 2; 35 patients), childhood- to adolescence-onset dystonia, without cerebellar symptoms (group 3; 23 patients), childhood- to adolescence-onset isolated cerebellar symptoms (group 4; 22 patients), childhood- to adult-onset prominent muscle weakness (group 5; 2 patients), and patients with adult-onset EP features, with anterior horn cell disease arising subsequently (group 6; 5 patients). CONCLUSIONS: This systematic study of the different motor abnormalities and their course over time in patients with mild phenotypes of A-T, enabled us to recognize 6 essentially different phenotypic patterns. Awareness of these different trajectories of motor abnormalities in milder forms of A-T will contribute to a reduction of diagnostic delay in this severe multisystem disorder.
Assuntos
Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/diagnóstico , Transtornos dos Movimentos/etiologia , Adulto , Idade de Início , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Estudos de Coortes , Bases de Dados Bibliográficas/estatística & dados numéricos , Feminino , Humanos , Masculino , Mutação/genética , FenótipoRESUMO
The biological functions of the dual bromodomains of human transcription-initiation-factor TFIID subunit 1 (TAF1(1,2)) remain unknown, although TAF1 has been identified as a potential target for oncology research. Here, we describe the discovery of a potent and selective in vitro tool compound for TAF1(2), starting from a previously reported lead. A cocrystal structure of lead compound 2 bound to TAF1(2) enabled structure-based design and structure-activity-relationship studies that ultimately led to our in vitro tool compound, 27 (GNE-371). Compound 27 binds TAF1(2) with an IC50 of 10 nM while maintaining excellent selectivity over other bromodomain-family members. Compound 27 is also active in a cellular-TAF1(2) target-engagement assay (IC50 = 38 nM) and exhibits antiproliferative synergy with the BET inhibitor JQ1, suggesting engagement of endogenous TAF1 by 27 and further supporting the use of 27 in mechanistic and target-validation studies.
Assuntos
Benzimidazóis/metabolismo , Desenho de Fármacos , Sondas Moleculares/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Domínios ProteicosRESUMO
The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.