Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(1): 10-21, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381264

RESUMO

Serine phosphorylation of AMPA receptor (AMPAR) subunits GluA1 and GluA2 modulates AMPAR trafficking during long-term changes in strength of hippocampal excitatory transmission required for normal learning and memory. The post-translational addition and removal of O-linked ß-N-acetylglucosamine (O-GlcNAc) also occurs on serine residues. This, together with the high expression of the enzymes O-GlcNAc transferase (OGT) and ß-N-acetylglucosamindase (O-GlcNAcase), suggests a potential role for O-GlcNAcylation in modifying synaptic efficacy and cognition. Furthermore, because key synaptic proteins are O-GlcNAcylated, this modification may be as important to brain function as phosphorylation, yet its physiological significance remains unknown. We report that acutely increasing O-GlcNAcylation in Sprague Dawley rat hippocampal slices induces an NMDA receptor and protein kinase C-independent long-term depression (LTD) at hippocampal CA3-CA1 synapses (O-GcNAc LTD). This LTD requires AMPAR GluA2 subunits, which we demonstrate are O-GlcNAcylated. Increasing O-GlcNAcylation interferes with long-term potentiation, and in hippocampal behavioral assays, it prevents novel object recognition and placement without affecting contextual fear conditioning. Our findings provide evidence that O-GlcNAcylation dynamically modulates hippocampal synaptic function and learning and memory, and suggest that altered O-GlcNAc levels could underlie cognitive dysfunction in neurological diseases.


Assuntos
Acetilglucosaminidase/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Acilação/fisiologia , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Mutantes , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
2.
Circulation ; 114(20): 2104-12, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17060380

RESUMO

BACKGROUND: Congenital long-QT syndrome (LQTS) is a primary arrhythmogenic syndrome stemming from perturbed cardiac repolarization. LQTS, which affects approximately 1 in 3000 persons, is 1 of the most common causes of autopsy-negative sudden death in the young. Since the sentinel discovery of cardiac channel gene mutations in LQTS in 1995, hundreds of mutations in 8 LQTS susceptibility genes have been identified. All 8 LQTS genotypes represent primary cardiac channel defects (ie, ion channelopathy) except LQT4, which is a functional channelopathy because of mutations in ankyrin-B. Approximately 25% of LQTS remains unexplained pathogenetically. We have pursued a "final common pathway" hypothesis to elicit novel LQTS-susceptibility genes. With the recent observation that the LQT3-associated, SCN5A-encoded cardiac sodium channel localizes in caveolae, which are known membrane microdomains whose major component in the striated muscle is caveolin-3, we hypothesized that mutations in caveolin-3 may represent a novel pathogenetic mechanism for LQTS. METHODS AND RESULTS: Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, we performed open reading frame/splice site mutational analysis on CAV3 in 905 unrelated patients referred for LQTS genetic testing. CAV3 mutations were engineered by site-directed mutagenesis and the molecular phenotype determined by transient heterologous expression into cell lines that stably express the cardiac sodium channel hNa(v)1.5. We identified 4 novel mutations in CAV3-encoded caveolin-3 that were absent in >1000 control alleles. Electrophysiological analysis of sodium current in HEK293 cells stably expressing hNa(v)1.5 and transiently transfected with wild-type and mutant caveolin-3 demonstrated that mutant caveolin-3 results in a 2- to 3-fold increase in late sodium current compared with wild-type caveolin-3. Our observations are similar to the increased late sodium current associated with LQT3-associated SCN5A mutations. CONCLUSIONS: The present study reports the first CAV3 mutations in subjects with LQTS, and we provide functional data demonstrating a gain-of-function increase in late sodium current.


Assuntos
Caveolina 3/genética , Síndrome do QT Longo/fisiopatologia , Mutação , Canais de Sódio/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , Condutividade Elétrica , Eletrocardiografia , Eletrofisiologia , Feminino , Humanos , Imunoprecipitação , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Masculino , Dados de Sequência Molecular , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa