Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 273: 129550, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33508689

RESUMO

Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, 226Ra concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1-0.3 Bq g-1) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (≤2 µm). Experimental studies of synthetic/field produced water and seawater mixing under laboratory conditions showed that a significant proportion of radium (up to 97%) co-precipitated with barite confirming the radiobarite fate pathway. The results showed that produced water discharge into the marine environment results in the formation of radiobarite particles which incorporate a significant portion of radium and can be deposited in marine sediments.


Assuntos
Rádio (Elemento) , Poluentes Radioativos da Água , Indústrias , Rádio (Elemento)/análise , Água do Mar , Água , Poluentes Radioativos da Água/análise
2.
Environ Sci Technol ; 44(22): 8497-8502, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20977201

RESUMO

Concentration depth profiles and inventories of solid-phase As, Sb, Pb, and Cu were determined in ²¹°Pb-dated cores from an ombrotrophic peat bog in northwest England. Cores were collected from the peat dome and adjacent to an eroding gully. Down-core distributions of As, Sb, Pb, and Cu in the dome core are almost identical. The water table is close to the dome surface with only short-term draw-down. Under these conditions, As, Sb, Pb, and Cu are immobile, allowing the reconstruction of trends in historical contaminant deposition. The peak in atmospheric deposition of As, Sb, Pb, and Cu (4.59, 2.78, 147, and 26.7 mg m⁻² y⁻¹, respectively) occurred during the late 19th century. Stable Pb isotope ratios reveal that Pb deposition during this period was from indigenous and foreign sources. The mean water table is much lower at the gully edge, and there are pronounced interannual fluctuations. These conditions have not affected the integrity of the Pb and Cu records but have caused postdepositional mobilization and redistribution of As and Sb. Cumulative inventories show significant loss of As and Sb at the gully edge site. Long-term water table draw-down in ombrotrophic peat bogs has the potential to alter the geochemistry and fate of previously deposited As and Sb.


Assuntos
Arsênio/análise , Metais Pesados/análise , Sphagnopsida , Poluentes Químicos da Água/análise , Antimônio/análise , Cobre/análise , Inglaterra , Monitoramento Ambiental , Chumbo/análise , Ciclo Hidrológico
3.
Front Microbiol ; 11: 286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153553

RESUMO

Produced waters from hydraulically fractured shale formations give insight into the microbial ecology and biogeochemical conditions down-well. This study explores the potential for sulfide production by persistent microorganisms recovered from produced water samples collected from the Marcellus shale formation. Hydrogen sulfide is highly toxic and corrosive, and can lead to the formation of "sour gas" which is costly to refine. Furthermore, microbial colonization of hydraulically fractured shale could result in formation plugging and a reduction in well productivity. It is vital to assess the potential for sulfide production in persistent microbial taxa, especially when considering the trend of reusing produced waters as input fluids, potentially enriching for problematic microorganisms. Using most probable number (MPN) counts and 16S rRNA gene sequencing, multiple viable strains of bacteria were identified from stored produced waters, mostly belonging to the Genus Halanaerobium, that were capable of growth via fermentation, and produced sulfide when supplied with thiosulfate. No sulfate-reducing bacteria (SRB) were detected through culturing, despite the detection of relatively low numbers of sulfate-reducing lineages by high-throughput 16S rRNA gene sequencing. These results demonstrate that sulfidogenic produced water populations remain viable for years post production and, if left unchecked, have the potential to lead to natural gas souring during shale gas extraction.

4.
Proc Biol Sci ; 276(1672): 3429-37, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19570788

RESUMO

An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material).


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Animais , North Dakota , Pele/anatomia & histologia , Espectroscopia de Infravermelho com Transformada de Fourier , Tendões/anatomia & histologia , Difração de Raios X
5.
Sci Rep ; 8(1): 11683, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076389

RESUMO

Pore characterization in shales is challenging owing to the wide range of pore sizes and types present. Haynesville-Bossier shale (USA) was sampled as a typical clay-bearing siliceous, organic-rich, gas-mature shale and characterized over pore diameters ranging 2 nm to 3000 nm. Three advanced imaging techniques were utilized correlatively, including the application of Xe+ plasma focused ion beam scanning electron microscopy (plasma FIB or PFIB), complemented by the Ga+ FIB method which is now frequently used to characterise porosity and organic/inorganic phases, together with transmission electron microscope tomography of the nano-scale pores (voxel size 0.6 nm; resolution 1-2 nm). The three pore-size scales each contribute differently to the pore network. Those <10 nm (greatest number), 10 nm to 100 nm (best-connected hence controls transport properties), and >100 nm (greatest total volume hence determines fluid storativity). Four distinct pore types were found: intra-organic, organic-mineral interface, inter-mineral and intra-mineral pores were recognized, with characteristic geometries. The whole pore network comprises a globally-connected system between phyllosilicate mineral grains (diameter: 6-50 nm), and locally-clustered connected pores within porous organic matter (diameter: 200-800 nm). Integrated predictions of pore geometry, connectivity, and roles in controlling petrophysical properties were verified through experimental permeability measurements.

6.
Front Microbiol ; 8: 679, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469616

RESUMO

Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide.

7.
Environ Pollut ; 159(10): 3129-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21683489

RESUMO

Atmospheric deposition of trace metals and metalloids from anthropogenic sources has led to the contamination of many European peatlands. To assess the fate and behaviour of previously deposited arsenic and lead, we constructed catchment-scale mass budgets for a degraded peatland in Northern England. Our results show a large net export of both lead and arsenic via runoff (282 ± 21.3 gPb ha(-1) y(-1) and 60.4 ± 10.5 gAs ha(-1) y(-1)), but contrasting controls on this release. Suspended particulates account for the majority of lead export, whereas the aqueous phase dominates arsenic export. Lead release is driven by geomorphological processes and is a primary effect of erosion. Arsenic release is driven by the formation of a redox-dynamic zone in the peat associated with water table drawdown, a secondary effect of gully erosion. Degradation of peatland environments by natural and anthropogenic processes has the potential to release the accumulated pool of legacy contaminants to surface waters.


Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Poluição Ambiental/estatística & dados numéricos , Chumbo/análise , Poluentes Químicos da Água/análise , Inglaterra
8.
Environ Sci Technol ; 44(8): 2940-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20337471

RESUMO

The quality of the urban environment is of growing concern as its human population continues to dramatically increase. X-ray absorption spectroscopy (XAS) and SEM have been used to study the solid-phase speciation of Pb in urban road dust sediments (RDS) in Manchester, UK. XANES analysis and linear combination modeling indicate that PbCrO(4) and Pb-sorbed goethite occur in 1000-500 microm, 250-125 microm, 63-38 microm, and <38 microm size fractions, collectively representing between 51-67% of the contributing Pb-phases. XANES analysis suggests that PbO, PbCl2, and Pb carbonates are also present. EXAFS modeling for all grain size fractions gives best fit models with a first shell of two oxygen atoms at 2.29-2.32 A, which corroborate the possible presence of Pb-sorbed goethite, and also suggest the presence of Pb phosphates and Pb oxides. Second shell Pb-Fe and second and third shell Pb-Pb scattering distances confirm Pb-sorbed to Fe oxide, and PbCl2 and PbCrO4, respectively. Many of the XAS models are corroborated by SEM observations. The Pb-phases may pose a risk to human health if inhaled or ingested, with insoluble phases such as PbCrO4 potentially causing inflammation in the lungs, and soluble phases such as PbO potentially being the most bioaccessible in the digestive tract.


Assuntos
Poeira , Chumbo/análise , Microscopia Eletrônica de Varredura , Reino Unido , Difração de Raios X
9.
Environ Geochem Health ; 25(1): 115-22, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12901086

RESUMO

Remobilisation of contaminant metals from sediments can occur by chemical, biological or physical changes. This in turn can lead to contaminant fluxes to the porewaters and ultimately the water column. The aim of the research presented here is to document post-depositional controls on metal mobility and fluxes in a heavily metal-contaminated estuary. This will allow for an improved understanding of the impact of contaminated sediments on water quality from both a short-term and long-term perspective. Dulas Bay is situated on the east coast of Anglesey, North Wales, and receives polluted waters from Parys Mountain. Metals within Dulas Bay sediments show surface enrichment and variations in mineralogical form. Diagenesis clearly plays a role in post-depositional behaviour of the metals, forming sulphides and potentially carbonates. The presence of a dominant exchangeable/carbonate fraction, and elevated porewater metals, in this sulphidic system is significant and could indicate the presence of freshwater diagenesis, or, reflect the high levels of metals in the sediment.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/química , Poluentes da Água/análise , Carbonatos/química , Fenômenos Geológicos , Geologia , Porosidade , Sulfetos/química , País de Gales
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa