Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
N Engl J Med ; 387(5): 421-432, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35921451

RESUMO

BACKGROUND: Aggregated α-synuclein plays an important role in the pathogenesis of Parkinson's disease. The monoclonal antibody prasinezumab, directed at aggregated α-synuclein, is being studied for its effect on Parkinson's disease. METHODS: In this phase 2 trial, we randomly assigned participants with early-stage Parkinson's disease in a 1:1:1 ratio to receive intravenous placebo or prasinezumab at a dose of 1500 mg or 4500 mg every 4 weeks for 52 weeks. The primary end point was the change from baseline to week 52 in the sum of scores on parts I, II, and III of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 236, with higher scores indicating greater impairment). Secondary end points included the dopamine transporter levels in the putamen of the hemisphere ipsilateral to the clinically more affected side of the body, as measured by 123I-ioflupane single-photon-emission computed tomography (SPECT). RESULTS: A total of 316 participants were enrolled; 105 were assigned to receive placebo, 105 to receive 1500 mg of prasinezumab, and 106 to receive 4500 mg of prasinezumab. The baseline mean MDS-UPDRS scores were 32.0 in the placebo group, 31.5 in the 1500-mg group, and 30.8 in the 4500-mg group, and mean (±SE) changes from baseline to 52 weeks were 9.4±1.2 in the placebo group, 7.4±1.2 in the 1500-mg group (difference vs. placebo, -2.0; 80% confidence interval [CI], -4.2 to 0.2; P = 0.24), and 8.8±1.2 in the 4500-mg group (difference vs. placebo, -0.6; 80% CI, -2.8 to 1.6; P = 0.72). There was no substantial difference between the active-treatment groups and the placebo group in dopamine transporter levels on SPECT. The results for most clinical secondary end points were similar in the active-treatment groups and the placebo group. Serious adverse events occurred in 6.7% of the participants in the 1500-mg group and in 7.5% of those in the 4500-mg group; infusion reactions occurred in 19.0% and 34.0%, respectively. CONCLUSIONS: Prasinezumab therapy had no meaningful effect on global or imaging measures of Parkinson's disease progression as compared with placebo and was associated with infusion reactions. (Funded by F. Hoffmann-La Roche and Prothena Biosciences; PASADENA ClinicalTrials.gov number, NCT03100149.).


Assuntos
Anticorpos Monoclonais Humanizados , Antiparkinsonianos , Doença de Parkinson , alfa-Sinucleína , Anticorpos Monoclonais Humanizados/uso terapêutico , Antiparkinsonianos/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/uso terapêutico , Método Duplo-Cego , Humanos , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento , alfa-Sinucleína/antagonistas & inibidores
2.
Mov Disord ; 37(3): 585-597, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897818

RESUMO

BACKGROUND: Evaluating the discrepancies between patient-reported measures and clinician examination has implications for formulating individual treatment regimens. OBJECTIVE: This study investigated the association between health outcomes and level of self-reported motor-related function impairment relative to clinician-examined motor signs. METHODS: Recently diagnosed PD patients were evaluated using the Parkinson's Progression Marker Initiative (PPMI, N = 420) and the PASADENA phase II clinical trial (N = 316). We calculated the average normalized difference between each participant's part II and III MDS-UPDRS (Movement Disorder Society Unified Parkinson's Disease Rating Scale) scores. Individuals with score differences <25th or >75th percentiles were labeled as low- and high-self-reporters, respectively (those between ranges were labeled intermediate-self-reporters). We compared a wide range of clinical/biomarker readouts among these three groups, using Kruskal-Wallis nonparametric and Pearson's χ2 tests. Spearman's correlations were tested for associations between MDS-UPDRS subscales. RESULTS: In both cohorts, high-self-reporters reported the largest impairment/symptom experience for most motor and nonmotor patient-reported variables. By contrast, these high-self-reporters were similar to or less impaired on clinician-examined and biomarker measures. Patient-reported nonmotor symptoms on MDS-UPDRS part IB showed the strongest positive correlation with self-reported motor-related impairment (PPMI rs  = 0.54, PASADENA rs  = 0.52). This correlation was numerically stronger than the part II and clinician-examined MDS-UPDRS part III correlation (PPMI rs  = 0.38, PASADENA rs  = 0.28). CONCLUSION: Self-reported motor-related impairments reflect not only motor signs/symptoms but also other self-reported nonmotor measures. This may indicate (1) a direct impact of nonmotor symptoms on motor-related functioning and/or (2) the existence of general response tendencies in how patients self-rate symptoms. Our findings suggest further investigation into the suitability of MDS-UPDRS II to assess motor-related impairments. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Testes de Estado Mental e Demência , Doença de Parkinson/diagnóstico , Autorrelato , Índice de Gravidade de Doença
3.
Mov Disord ; 36(8): 1972-1978, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942926

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) levels of monoamine metabolites may represent biomarkers of Parkinson's disease (PD). OBJECTIVE: The aim of this study was quantification of multiple metabolites in CSF from PD versus healthy control subjects (HCs), including longitudinal analysis. METHODS: Absolute levels of multiple monoamine metabolites in CSF were quantified by liquid chromatography coupled with tandem mass spectrometry from 161 individuals with early PD and 115 HCs from the Parkinson's Progression Marker Initiative and de novo PD (DeNoPA) studies. RESULTS: Baseline levels of homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were lower in individuals with PD compared with HCs. HVA levels correlated with Movement Disorder Society Unified Parkinson's Disease Rating Scale total scores (P < 0.01). Both HVA/dopamine and DOPAC/dopamine levels correlated with caudate nucleus and raw DOPAC with putamen dopamine transporter single-photon emission computed tomography uptake ratios (P < 0.01). No metabolite changed over 2 years in drug-naive individuals, but some changed on starting levodopa treatment. CONCLUSIONS: HVA and DOPAC CSF levels mirrored nigrostriatal pathway damage, confirming the central role of dopaminergic degeneration in early PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Ácido 3,4-Di-Hidroxifenilacético , Ácido Homovanílico , Humanos , Levodopa , Neurotransmissores , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico
4.
Mov Disord ; 36(4): 895-904, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232556

RESUMO

BACKGROUND: Recent studies reported abnormal alpha-synuclein deposition in biopsy-accessible sites of the peripheral nervous system in Parkinson's disease (PD). This has considerable implications for clinical diagnosis. Moreover, if deposition occurs early, it may enable tissue diagnosis of prodromal PD. OBJECTIVE: The aim of this study was to develop and test an automated bright-field immunohistochemical assay of cutaneous pathological alpha-synuclein deposition in patients with idiopathic rapid eye movement sleep behavior disorder, PD, and atypical parkinsonism and in control subjects. METHODS: For assay development, postmortem skin biopsies were taken from 28 patients with autopsy-confirmed Lewy body disease and 23 control subjects. Biopsies were stained for pathological alpha-synuclein in automated stainers using a novel dual-immunohistochemical assay for serine 129-phosphorylated alpha-synuclein and pan-neuronal marker protein gene product 9.5. After validation, single 3-mm punch skin biopsies were taken from the cervical 8 paravertebral area from 79 subjects (28 idiopathic rapid eye movement sleep behavior disorder, 20 PD, 10 atypical parkinsonism, and 21 control subjects). Raters blinded to clinical diagnosis assessed the biopsies. RESULTS: The immunohistochemistry assay differentiated alpha-synuclein pathology from nonpathological-appearing alpha-synuclein using combined phosphatase and protease treatments. Among autopsy samples, 26 of 28 Lewy body samples and none of the 23 controls were positive. Among living subjects, punch biopsies were positive in 23 (82%) subjects with idiopathic rapid eye movement sleep behavior disorder, 14 (70%) subjects with PD, 2 (20%) subjects with atypical parkinsonism, and none (0%) of the control subjects. After a 3-year follow-up, eight idiopathic rapid eye movement sleep behavior disorder subjects phenoconverted to defined neurodegenerative syndromes, in accordance with baseline biopsy results. CONCLUSION: Even with a single 3-mm punch biopsy, there is considerable promise for using pathological alpha-synuclein deposition in skin to diagnose both clinical and prodromal PD. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Pele , alfa-Sinucleína
5.
Mov Disord ; 33(8): 1287-1297, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29701258

RESUMO

BACKGROUND: Ubiquitous digital technologies such as smartphone sensors promise to fundamentally change biomedical research and treatment monitoring in neurological diseases such as PD, creating a new domain of digital biomarkers. OBJECTIVES: The present study assessed the feasibility, reliability, and validity of smartphone-based digital biomarkers of PD in a clinical trial setting. METHODS: During a 6-month, phase 1b clinical trial with 44 Parkinson participants, and an independent, 45-day study in 35 age-matched healthy controls, participants completed six daily motor active tests (sustained phonation, rest tremor, postural tremor, finger-tapping, balance, and gait), then carried the smartphone during the day (passive monitoring), enabling assessment of, for example, time spent walking and sit-to-stand transitions by gyroscopic and accelerometer data. RESULTS: Adherence was acceptable: Patients completed active testing on average 3.5 of 7 times/week. Sensor-based features showed moderate-to-excellent test-retest reliability (average intraclass correlation coefficient = 0.84). All active and passive features significantly differentiated PD from controls with P < 0.005. All active test features except sustained phonation were significantly related to corresponding International Parkinson and Movement Disorder Society-Sponsored UPRDS clinical severity ratings. On passive monitoring, time spent walking had a significant (P = 0.005) relationship with average postural instability and gait disturbance scores. Of note, for all smartphone active and passive features except postural tremor, the monitoring procedure detected abnormalities even in those Parkinson participants scored as having no signs in the corresponding International Parkinson and Movement Disorder Society-Sponsored UPRDS items at the site visit. CONCLUSIONS: These findings demonstrate the feasibility of smartphone-based digital biomarkers and indicate that smartphone-sensor technologies provide reliable, valid, clinically meaningful, and highly sensitive phenotypic data in Parkinson's disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/uso terapêutico , Atividade Motora/fisiologia , Avaliação de Resultados em Cuidados de Saúde/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Smartphone , Idoso , Estudos de Casos e Controles , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Doença de Parkinson/psicologia , Cooperação do Paciente/psicologia , Desempenho Psicomotor , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Fatores de Tempo
6.
Neurobiol Learn Mem ; 141: 53-59, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28347876

RESUMO

The parietal lobe is important for successful recognition memory, but its role is not yet fully understood. We investigated the parietal lobes' contribution to immediate paired-associate memory and delayed item-recognition memory separately for hits (targets) and correct rejections (distractors). We compared the behavioral performance of 56 patients with known parietal and medial temporal lobe dysfunction (i.e. early Alzheimer's Disease) to 56 healthy control participants in an immediate paired and delayed single item object memory task. Additionally, we performed voxel-based morphometry analyses to investigate the functional-neuroanatomic relationships between performance and voxel-based estimates of atrophy in whole-brain analyses. Behaviorally, all participants performed better identifying targets than rejecting distractors. The voxel-based morphometry analyses associated atrophy in the right ventral parietal cortex with fewer correct responses to familiar items (i.e. hits) in the immediate and delayed conditions. Additionally, medial temporal lobe integrity correlated with better performance in rejecting distractors, but not in identifying targets, in the immediate paired-associate task. Our findings suggest that the parietal lobe critically supports successful immediate and delayed target recognition memory, and that the ventral aspect of the parietal cortex and the medial temporal lobe may have complementary preferences for identifying targets and rejecting distractors, respectively, during recognition memory.


Assuntos
Amnésia/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Lobo Parietal/fisiologia , Reconhecimento Psicológico/fisiologia , Idoso , Idoso de 80 Anos ou mais , Amnésia/diagnóstico por imagem , Mapeamento Encefálico , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem
7.
Cereb Cortex ; 23(1): 187-97, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275484

RESUMO

To recognize visual objects, our sensory perceptions are transformed through dynamic neural interactions into meaningful representations of the world but exactly how visual inputs invoke object meaning remains unclear. To address this issue, we apply a regression approach to magnetoencephalography data, modeling perceptual and conceptual variables. Key conceptual measures were derived from semantic feature-based models claiming shared features (e.g., has eyes) provide broad category information, while distinctive features (e.g., has a hump) are additionally required for more specific object identification. Our results show initial perceptual effects in visual cortex that are rapidly followed by semantic feature effects throughout ventral temporal cortex within the first 120 ms. Moreover, these early semantic effects reflect shared semantic feature information supporting coarse category-type distinctions. Post-200 ms, we observed the effects along the extent of ventral temporal cortex for both shared and distinctive features, which together allow for conceptual differentiation and object identification. By relating spatiotemporal neural activity to statistical feature-based measures of semantic knowledge, we demonstrate that qualitatively different kinds of perceptual and semantic information are extracted from visual objects over time, with rapid activation of shared object features followed by concomitant activation of distinctive features that together enable meaningful visual object recognition.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Semântica , Adulto , Feminino , Humanos , Masculino
8.
Nat Med ; 30(4): 1096-1103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622249

RESUMO

Prasinezumab, a monoclonal antibody that binds aggregated α-synuclein, is being investigated as a potential disease-modifying therapy in early-stage Parkinson's disease. Although in the PASADENA phase 2 study, the primary endpoint (Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) sum of Parts I + II + III) was not met, prasinezumab-treated individuals exhibited slower progression of motor signs than placebo-treated participants (MDS-UPDRS Part III). We report here an exploratory analysis assessing whether prasinezumab showed greater benefits on motor signs progression in prespecified subgroups with faster motor progression. Prasinezumab's potential effects on disease progression were assessed in four prespecified and six exploratory subpopulations of PASADENA: use of monoamine oxidase B inhibitors at baseline (yes versus no); Hoehn and Yahr stage (2 versus 1); rapid eye movement sleep behavior disorder (yes versus no); data-driven subphenotypes (diffuse malignant versus nondiffuse malignant); age at baseline (≥60 years versus <60 years); sex (male versus female); disease duration (>12 months versus <12 months); age at diagnosis (≥60 years versus <60 years); motor subphenotypes (akinetic-rigid versus tremor-dominant); and motor subphenotypes (postural instability gait dysfunction versus tremor-dominant). In these subpopulations, the effect of prasinezumab on slowing motor signs progression (MDS-UPDRS Part III) was greater in the rapidly progressing subpopulations (for example, participants who were diffuse malignant or taking monoamine oxidase B inhibitors at baseline). This exploratory analysis suggests that, in a trial of 1-year duration, prasinezumab might reduce motor progression to a greater extent in individuals with more rapidly progressing Parkinson's disease. However, because this was a post hoc analysis, additional randomized clinical trials are needed to validate these findings.


Assuntos
Doença de Parkinson , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Tremor/tratamento farmacológico , Antiparkinsonianos/uso terapêutico , Monoaminoxidase/uso terapêutico , Progressão da Doença
9.
J Cogn Neurosci ; 25(10): 1723-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23662861

RESUMO

Recognizing an object involves more than just visual analyses; its meaning must also be decoded. Extensive research has shown that processing the visual properties of objects relies on a hierarchically organized stream in ventral occipitotemporal cortex, with increasingly more complex visual features being coded from posterior to anterior sites culminating in the perirhinal cortex (PRC) in the anteromedial temporal lobe (aMTL). The neurobiological principles of the conceptual analysis of objects remain more controversial. Much research has focused on two neural regions-the fusiform gyrus and aMTL, both of which show semantic category differences, but of different types. fMRI studies show category differentiation in the fusiform gyrus, based on clusters of semantically similar objects, whereas category-specific deficits, specifically for living things, are associated with damage to the aMTL. These category-specific deficits for living things have been attributed to problems in differentiating between highly similar objects, a process that involves the PRC. To determine whether the PRC and the fusiform gyri contribute to different aspects of an object's meaning, with differentiation between confusable objects in the PRC and categorization based on object similarity in the fusiform, we carried out an fMRI study of object processing based on a feature-based model that characterizes the degree of semantic similarity and difference between objects and object categories. Participants saw 388 objects for which feature statistic information was available and named the objects at the basic level while undergoing fMRI scanning. After controlling for the effects of visual information, we found that feature statistics that capture similarity between objects formed category clusters in fusiform gyri, such that objects with many shared features (typical of living things) were associated with activity in the lateral fusiform gyri whereas objects with fewer shared features (typical of nonliving things) were associated with activity in the medial fusiform gyri. Significantly, a feature statistic reflecting differentiation between highly similar objects, enabling object-specific representations, was associated with bilateral PRC activity. These results confirm that the statistical characteristics of conceptual object features are coded in the ventral stream, supporting a conceptual feature-based hierarchy, and integrating disparate findings of category responses in fusiform gyri and category deficits in aMTL into a unifying neurocognitive framework.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Nomes , Oxigênio/sangue , Tempo de Reação , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea , Adulto Jovem
10.
Hippocampus ; 23(9): 832-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23609914

RESUMO

Animal models agree that the perirhinal cortex plays a critical role in object recognition memory, but qualitative aspects of this mnemonic function are still debated. A recent model claims that the perirhinal cortex is required to recognize the novelty of confusable distractor stimuli, and that damage here results in an increased propensity to judge confusable novel objects as familiar (i.e., false positives). We tested this model in healthy participants and patients with varying degrees of perirhinal cortex damage, i.e., amnestic mild cognitive impairment and very early Alzheimer's disease (AD), with a recognition memory task with confusable and less confusable realistic object pictures, and from whom we acquired high-resolution anatomic MRI scans. Logistic mixed-model behavioral analyses revealed that both patient groups committed more false positives with confusable than less confusable distractors, whereas healthy participants performed comparably in both conditions. A voxel-based morphometry analysis demonstrated that this effect was associated with atrophy of the anteromedial temporal lobe, including the perirhinal cortex. These findings suggest that also the human perirhinal cortex recognizes the novelty of confusable objects, consistent with its border position between the hierarchical visual object processing and medial temporal lobe memory systems, and explains why AD patients exhibit a heightened propensity to commit false positive responses with inherently confusable stimuli.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/patologia , Confusão/etiologia , Lobo Temporal/patologia , Idoso , Idoso de 80 Anos ou mais , Atrofia/diagnóstico , Atrofia/patologia , Confusão/patologia , Feminino , Humanos , Modelos Logísticos , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade
11.
Brain ; 135(Pt 12): 3757-69, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23250887

RESUMO

Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer's disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or hippocampus, significantly predicted naming performance on living relative to non-living things. These findings indicate that one specific anteromedial temporal lobe region-the medial perirhinal cortex-is necessary for the disambiguation of perceptually and semantically confusable objects. Taken together, these results support a hierarchical account of object processing, whereby the perirhinal cortex at the apex of the ventral object processing system is required to bind properties of not just perceptually, but also semantically confusable objects together, enabling their disambiguation from other similar objects and thus comprehension. Significantly, this model combining a hierarchical object processing architecture with a semantic feature statistic account explains why category-specific semantic impairments for living things are associated with anteromedial temporal lobe damage, and pinpoints the root of this syndrome to perirhinal cortex damage.


Assuntos
Doença de Alzheimer/patologia , Associação , Mapeamento Encefálico , Disfunção Cognitiva/patologia , Córtex Entorrinal/patologia , Reconhecimento Visual de Modelos/fisiologia , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Atrofia/patologia , Compreensão , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa , Tempo de Reação , Semântica
12.
Sci Rep ; 12(1): 12081, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840753

RESUMO

Digital health technologies enable remote and therefore frequent measurement of motor signs, potentially providing reliable and valid estimates of motor sign severity and progression in Parkinson's disease (PD). The Roche PD Mobile Application v2 was developed to measure bradykinesia, bradyphrenia and speech, tremor, gait and balance. It comprises 10 smartphone active tests (with ½ tests administered daily), as well as daily passive monitoring via a smartphone and smartwatch. It was studied in 316 early-stage PD participants who performed daily active tests at home then carried a smartphone and wore a smartwatch throughout the day for passive monitoring (study NCT03100149). Here, we report baseline data. Adherence was excellent (96.29%). All pre-specified sensor features exhibited good-to-excellent test-retest reliability (median intraclass correlation coefficient = 0.9), and correlated with corresponding Movement Disorder Society-Unified Parkinson's Disease Rating Scale items (rho: 0.12-0.71). These findings demonstrate the preliminary reliability and validity of remote at-home quantification of motor sign severity with the Roche PD Mobile Application v2 in individuals with early PD.


Assuntos
Aplicativos Móveis , Doença de Parkinson , Tecnologia de Sensoriamento Remoto , Humanos , Doença de Parkinson/fisiopatologia , Reprodutibilidade dos Testes , Smartphone , Tremor/fisiopatologia
13.
J Cogn Neurosci ; 23(8): 1887-99, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20617883

RESUMO

Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.


Assuntos
Mapeamento Encefálico , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Semântica , Lobo Temporal/fisiologia , Adulto , Ondas Encefálicas , Feminino , Humanos , Imageamento Tridimensional , Magnetoencefalografia , Masculino , Nomes , Vias Neurais/fisiologia , Dinâmica não Linear , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Adulto Jovem
14.
Front Neurosci ; 15: 765765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966256

RESUMO

Currently, no treatments available for Parkinson's disease (PD) can slow PD progression. At the early stage of the disease, only a subset of individuals with PD progress quickly, while the majority have a slowly progressive form of the disease. In developing treatments that aim to slow PD progression, clinical trials aim to include individuals who are likely to progress faster, such that a treatment effect, if one exists, can be identified easier and earlier. The aim of the present study was to identify baseline predictors of clinical progression in early PD. We analyzed 12-month data acquired from the PASADENA trial Part 1 (NCT03100149, n = 76 participants who were allocated to the placebo arm and did not start symptomatic therapy) and the Parkinson's Progression Markers Initiative (PPMI) study (n = 139 demographically and clinically matched participants). By using ridge regression models including clinical characteristics, imaging, and non-imaging biomarkers, we found that Hoehn and Yahr stage and dopamine transporter single-photon emission computed tomography specific binding ratios (Dat-SPECT SBR) in putamen ipsilateral to the side of motor symptom onset predicted PD progression at the early stage of the disease. Further studies are needed to confirm the validity of these predictors to identify with high accuracy individuals with early PD with a faster progression phenotype.

15.
Arch Clin Neuropsychol ; 36(5): 838-843, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33237317

RESUMO

OBJECTIVE: Reduced semantic memory performance is a known neuropsychological marker of very early Alzheimer's disease (AD), but the task format that best predicts disease status is an open question. The present study aimed to identify the semantic fluency task and measure that best discriminates early-stage AD patients (PATs) from cognitively healthy controls. METHOD: Semantic fluency performance for animals, fruits, tools, and vehicles was assessed in 70 early-stage AD PATs and 67 cognitively healthy participants. Logistic regressions and receiver operating characteristics were calculated for five total score semantic fluency measures. RESULTS: Compared with all other measures, living things (i.e., total correct animals + total correct fruits) achieved highest z-statistics, highest area under the curve and smallest difference between the upper and lower 95% confidence intervals. CONCLUSION: Living things total correct is a powerful tool to detect the earliest signs of incipient AD.


Assuntos
Doença de Alzheimer , Semântica , Doença de Alzheimer/diagnóstico , Humanos , Testes Neuropsicológicos , Comportamento Verbal
16.
Front Neurol ; 12: 705407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659081

RESUMO

Background: Currently available treatments for Parkinson's disease (PD) do not slow clinical progression nor target alpha-synuclein, a key protein associated with the disease. Objective: The study objective was to evaluate the efficacy and safety of prasinezumab, a humanized monoclonal antibody that binds aggregated alpha-synuclein, in individuals with early PD. Methods: The PASADENA study is a multicenter, randomized, double-blind, placebo-controlled treatment study. Individuals with early PD, recruited across the US and Europe, received monthly intravenous doses of prasinezumab (1,500 or 4,500 mg) or placebo for a 52-week period (Part 1), followed by a 52-week extension (Part 2) in which all participants received active treatment. Key inclusion criteria were: aged 40-80 years; Hoehn & Yahr (H&Y) Stage I or II; time from diagnosis ≤2 years; having bradykinesia plus one other cardinal sign of PD (e.g., resting tremor, rigidity); DAT-SPECT imaging consistent with PD; and either treatment naïve or on a stable monoamine oxidase B (MAO-B) inhibitor dose. Study design assumptions for sample size and study duration were built using a patient cohort from the Parkinson's Progression Marker Initiative (PPMI). In this report, baseline characteristics are compared between the treatment-naïve and MAO-B inhibitor-treated PASADENA cohorts and between the PASADENA and PPMI populations. Results: Of the 443 patients screened, 316 were enrolled into the PASADENA study between June 2017 and November 2018, with an average age of 59.9 years and 67.4% being male. Mean time from diagnosis at baseline was 10.11 months, with 75.3% in H&Y Stage II. Baseline motor and non-motor symptoms (assessed using Movement Disorder Society-Unified Parkinson's Disease Rating Scale [MDS-UPDRS]) were similar in severity between the MAO-B inhibitor-treated and treatment-naïve PASADENA cohorts (MDS-UPDRS sum of Parts I + II + III [standard deviation (SD)]; 30.21 [11.96], 32.10 [13.20], respectively). The overall PASADENA population (63.6% treatment naïve and 36.4% on MAO-B inhibitor) showed a similar severity in MDS-UPDRS scores (e.g., MDS-UPDRS sum of Parts I + II + III [SD]; 31.41 [12.78], 32.63 [13.04], respectively) to the PPMI cohort (all treatment naïve). Conclusions: The PASADENA study population is suitable to investigate the potential of prasinezumab to slow disease progression in individuals with early PD. Trial Registration: NCT03100149.

17.
J Int Neuropsychol Soc ; 16(5): 910-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20682088

RESUMO

The goal of the present study was to evaluate the diagnostic discriminability of three different global scores for the German version of the Consortium to Establish a Registry on Alzheimer's Disease-Neuropsychological Assessment Battery (CERAD-NAB). The CERAD-NAB was administered to 1100 healthy control participants [NC; Mini-Mental State Examination (MMSE) mean = 28.9] and 352 patients with very mild Alzheimer's disease (AD; MMSE mean = 26.1) at baseline and subsets of participants at follow-up an average of 2.4 (NC) and 1.2 (AD) years later. We calculated the following global scores: Chandler et al.'s (2005) score (summed raw scores), logistic regression on principal components analysis scores (PCA-LR), and logistic regression on demographically corrected CERAD-NAB variables (LR). Correct classification rates (CCR) were compared with areas under the receiver operating characteristics curves (AUC). The CCR of the LR score (AUC = .976) exceeded that of the PCA-LR, while the PCA-LR (AUC = .968) and Chandler (AUC = .968) scores performed comparably. Retest data improved the CCR of the PCA-LR and Chandler (trend) scores. Thus, for the German CERAD-NAB, Chandler et al.'s total score provided an effective global measure of cognitive functioning, whereby the inclusion of retest data tended to improve correct classification of individual cases.


Assuntos
Doença de Alzheimer/diagnóstico , Testes Neuropsicológicos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Área Sob a Curva , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Estudos Transversais , Progressão da Doença , Diagnóstico Precoce , Feminino , Alemanha/epidemiologia , Humanos , Modelos Logísticos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
18.
Brain ; 132(Pt 3): 671-83, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19190042

RESUMO

How does the brain bind together the different sensory features of objects to form meaningful, multimodal object representations? Human functional imaging findings implicate the left posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) in crossmodal integration, while animal ablation findings support a hierarchical object processing model in which outputs from each sensory stream are integrated in perirhinal cortex (PRc) of the anteromedial temporal lobe. To determine which neural regions are necessary for integrating audiovisual object features, and which regions are necessary for understanding the meaning of crossmodal objects, we administered crossmodal (audio-visual) and unimodal (auditory, visual) integration tasks to 16 brain-damaged patients. We correlated patients' behavioural performance with measures of neural integrity (signal intensity) of each voxel across the brains of each patient. The integrity of bilateral anteromedial and temporopolar regions, but not pSTS/MTG, was significantly correlated with poorer crossmodal compared with unimodal integration performance, and with meaningful aspects of crossmodal integration. Additional analyses confirmed the negative crossmodal integration findings in the pSTS/MTG: performance on a sentence-picture matching control task was significantly correlated with MTG/STG voxel signal intensities, suggesting that a truncated range of signals in this region could not have been responsible for the lack of a significant correlation between integrity and crossmodal integration performance, and individual analyses of three patients with lesions in pSTS/MTG but spared anteromedial temporal cortex revealed equivalent unimodal and crossmodal integration performance. These results extend findings from the non-human primate literature into the human domain by demonstrating that anteromedial temporal cortex is critically involved in crossmodal integration of object features. However, pSTS/MTG appears to play a supportive but non-essential role during crossmodal integration. Taken together, the present findings are consistent with a neurocognitive account of object representations which claims that anteromedial temporal lobe is critically involved in the formation and processing of complex, multimodal object representations.


Assuntos
Percepção Auditiva/fisiologia , Dano Encefálico Crônico/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiopatologia , Estimulação Acústica/métodos , Adolescente , Adulto , Idade de Início , Idoso , Dano Encefálico Crônico/etiologia , Dano Encefálico Crônico/patologia , Dano Encefálico Crônico/psicologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa/métodos , Adulto Jovem
19.
Int Psychogeriatr ; 22(1): 91-100, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19747425

RESUMO

BACKGROUND: The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) is a widely used screening tool for dementia. We aimed to determine the ability of the German version of the 16-item IQCODE with a two-year time frame to discriminate healthy mature control participants (NC) from mild cognitive impairment (MCI) and probable early Alzheimer's disease (AD) patients (all with Mini-mental State Examination (MMSE) scores >or= 24/30) and to optimize diagnostic discriminability by shortening the IQCODE. METHODS: 453 NC (49.7% women, age = 69.5 years +/- 8.2, education = 12.2 +/- 2.9), 172 MCI patients (41.9% women, age = 71.5 years +/- 8.8, education = 12.3 +/- 3.1) and 208 AD patients (59.1% women, age = 76.0 years +/- 6.4, education = 11.4 +/- 2.9) participated. Stepwise binary logistic regression analyses (LR) were used to shorten the test. Receiver operating characteristic curves (ROC) determined sensitivities, specificities, and correct classification rates (CCRs) for (a) NC vs. all patients; (b) NC vs. MCI; and (c) NC vs. AD patients. RESULTS: The mean IQCODE was 3.00 for NC, 3.35 for MCI, and 3.73 for AD. CCRs were 85.5% (NC-patient group), 79.9% (NC-MCI), and 90.7% (NC-AD), respectively. The diagnostic discriminability of the shortened 7-item IQCODE (i.e. items 1, 2, 3, 5, 7, 10, 14) was comparable with the longer version (i.e. 7-item CCRs: NC-patient group: 85.3%; NC-MCI: 80.1%, NC-AD: 90.5%). CONCLUSIONS: The German 16-item IQCODE with two-year time frame showed excellent screening properties for MCI and early AD patients. An abbreviated 7-item version demonstrated equally high diagnostic discriminability, thus allowing for more economical screening.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Programas de Rastreamento/métodos , Testes Neuropsicológicos , Idoso , Feminino , Alemanha/epidemiologia , Humanos , Masculino
20.
NPJ Digit Med ; 3: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32715091

RESUMO

Digital health technology tools (DHTT) are technologies such as apps, smartphones, and wearables that remotely acquire health-related information from individuals. They have the potential advantages of objectivity and sensitivity of measurement, richness of high-frequency sensor data, and opportunity for passive collection of health-related data. Thus, DHTTs promise to provide patient phenotyping at an order of granularity several times greater than is possible with traditional clinical research tools. While the conceptual development of novel DHTTs is keeping pace with technological and analytical advancements, an as yet unaddressed gap is how to develop robust and meaningful outcome measures based on sensor data. Here, we describe two roadmaps which were developed to generate outcome measures based on DHTT data: one using a data-centric approach and the second a patient-centric approach. The data-centric approach to develop digital outcome measures summarizes those sensor features maximally sensitive to the concept of interest, exemplified with the quantification of disease progression. The patient-centric approach summarizes those sensor features that are optimally relevant to patients' functioning in everyday life. Both roadmaps are exemplified for use in tracking disease progression in observational and clinical interventional studies, and with a DHTT designed to evaluate motor symptom severity and symptom experience in Parkinson's disease. Use cases other than disease progression (e.g., case-finding) are considered summarily. DHTT research requires methods to summarize sensor data into meaningful outcome measures. It is hoped that the concepts outlined here will encourage a scientific discourse and eventual consensus on the creation of novel digital outcome measures for both basic clinical research and clinical drug development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa