Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 19(4): 44-47, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29761625

RESUMO

A novel phantomless, EPID-based method of measuring the beam focal spot offset of a linear accelerator was proposed and validated for Varian machines. In this method, one set of jaws and the MLC were utilized to form a symmetric field and then a 180o collimator rotation was utilized to determine the radiation isocenter defined by the jaws and the MLC, respectively. The difference between these two isocentres is directly correlated with the beam focal spot offset of the linear accelerator. In the current work, the method has been considered for Elekta linacs. An Elekta linac with the Agility® head does not have two set of jaws, therefore, a modified method is presented making use of one set of diaphragms, the MLC and a full 360o collimator rotation. The modified method has been tested on two Elekta Synergy® linacs with Agility® heads and independently validated. A practical guide with instructions and a MATLAB® code is attached for easy implementation.


Assuntos
Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Rotação
2.
Artigo em Inglês | MEDLINE | ID: mdl-31792725

RESUMO

The effectiveness of radiotherapy treatments depends on the accuracy of the dose delivery process. The majority of radiotherapy courses are delivered on linear accelerators with a Multi Leaf Collimator (MLC) in 3D conformal Radiation Therapy, Intensity Modulated Radiation Therapy (IMRT) or Volumetric Modulated Arc Therapy (VMAT) modes that require accurate MLC positioning. This study investigates the MLC calibration accuracy, following manufacturer procedures for an Elekta Synergy linac with the Agility head, against the radiation focal spot offset (alignment with the collimator axis of rotation). If the radiation focal spot is not aligned ideally with the collimator axis of rotation then a systematic error can be introduced into the calibration procedure affecting absolute MLC leaf positions. Calibration of diaphrams is equally affected; however they are not investigated here. The results indicate that an estimated 0.15 mm MLC uncertainty in all MLC leaves positions can be introduced due to uncertainty of the radiation focal spot position of 0.21 mm.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa