Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Br J Haematol ; 204(2): 566-570, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38053270

RESUMO

While bortezomib has significant benefits in multiple myeloma (MM) therapy, the disease remains incurable due to the invariable development of bortezomib resistance. This emphasises the need for advanced models for preclinical evaluation of new therapeutic approaches for bortezomib-resistant MM. Here, we describe the development of an orthotopic syngeneic bortezomib-resistant MM mouse model based on the most well-characterised syngeneic MM mouse model derived from spontaneous MM-forming C57BL/KaLwRij mice. Using bortezomib-resistant 5TGM1 cells, we report and characterise a robust syngeneic mouse model of bortezomib-resistant MM that is well suited to the evaluation of new therapeutic approaches for proteasome inhibitor-resistant MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Animais , Camundongos , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Camundongos Endogâmicos C57BL , Inibidores de Proteassoma/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/uso terapêutico
2.
Blood ; 139(26): 3737-3751, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35443029

RESUMO

Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapêutico , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Ceramidas/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919246

RESUMO

Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6-9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required. In this study, we performed a systematic review of the molecular mechanisms that drive glioblastoma progression, which led to the identification of 65 drugs/inhibitors that we screened for their efficacy to kill patient-derived glioma stem cells in two dimensional (2D) cultures and patient-derived three dimensional (3D) glioblastoma explant organoids (GBOs). From the screening, we found a group of drugs that presented different selectivity on different patient-derived in vitro models. Moreover, we found that Costunolide, a TERT inhibitor, was effective in reducing the cell viability in vitro of both primary tumor models as well as tumor models pre-treated with chemotherapy and radiotherapy. These results present a novel workflow for screening a relatively large groups of drugs, whose results could lead to the identification of more personalized and effective treatment for recurrent glioblastoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Glioblastoma/tratamento farmacológico , Organoides , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/fisiopatologia , Células Cultivadas , Glioblastoma/fisiopatologia , Humanos , Medicina de Precisão , Microambiente Tumoral
4.
Clin Transl Immunology ; 13(7): e1519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975278

RESUMO

Objectives: CAR-T cells are being investigated as a novel immunotherapy for glioblastoma, but clinical success has been limited. We recently described fibroblast activation protein (FAP) as an ideal target antigen for glioblastoma immunotherapy, with expression on both tumor cells and tumor blood vessels. However, CAR-T cells targeting FAP have never been investigated as a therapy for glioblastoma. Methods: We generated a novel FAP targeting CAR with CD3ζ and CD28 signalling domains and tested the resulting CAR-T cells for their lytic activity and cytokine secretion function in vitro (using real-time impedance, flow cytometry, imaging and bead-based cytokine assays), and in vivo (using a xenograft mimicking the natural heterogeneity of human glioblastoma). Results: FAP-CAR-T cells exhibited target specificity against model cell lines and potent cytotoxicity against patient-derived glioma neural stem cells, even when only a subpopulation expressed FAP, indicating a bystander killing mechanism. Using co-culture assays, we confirmed FAP-CAR-T cells mediate bystander killing of antigen-negative tumor cells, but only after activation by FAP-positive target cells. This bystander killing was at least partially mediated by soluble factors and amplified by IL-2 which activated the non-transduced fraction of the CAR-T product. Finally, a low dose of intravenously administered FAP-CAR-T cells controlled, without overt toxicity, the growth of subcutaneous tumors created using a mixture of antigen-negative and antigen-positive glioblastoma cells. Conclusions: Our findings advance FAP as a leading candidate for clinical CAR-T therapy of glioblastoma and highlight under-recognised antigen nonspecific mechanisms that may contribute meaningfully to the antitumor activity of CAR-T cells.

5.
Mol Vis ; 19: 501-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441123

RESUMO

PURPOSE: Oxygen-induced retinopathy (OIR) is a robust animal model of human retinopathy of prematurity that readily allows changes in retinal gene and microRNA (miRNA) expression in response to fluctuations in oxygen levels to be studied. We sought to identify small non-coding RNA (ncRNA) genes that showed stable expression upon exposure to varying levels of oxygen, with different developmental stages and in different rat strains, to act as reference genes for normalizing miRNA expression in a rat model of OIR. METHODS: Expression of five small ncRNAs (U6 snRNA, miR-16, U87, 4.5S RNA (H) "Variant 1", and 5S ribosomal RNA [rRNA]) were tested on a standard RNA pool and representative retinal samples from P5, P6, P9, and P14 from room air- and cyclic hyperoxia-exposed rats using reverse transcription (RT)-qPCR, to assess the effect of developmental stage and exposure to fluctuations in oxygen levels, respectively. Two strains of inbred albino rats, Fischer 344 (F344, resistant to OIR) and Sprague-Dawley rats (SD, susceptible to OIR), were used to assess the effect of rat strain on the stability of the small ncRNAs. RESULTS: In this rat model of OIR, 5S rRNA expression was variable with strain, fluctuations in oxygen levels, and developmental stage. U6 snRNA was stably expressed with changes in oxygen levels, and minimal variation was observed with strain and developmental stage. MiR-16 showed less stable expression with changes in oxygen levels and between strains compared to U6 snRNA. Some variation in expression in response to developmental stage was also observed. The PCR amplification efficiencies of the U6 snRNA and miR-16 TaqMan assays were 56% and 78%, respectively. U87 and 4.5S RNA (H) "Variant 1" expression varied with strain, exposure to cyclic hyperoxia, and in particular developmental stage, and was at low levels in the neonatal rat retina. CONCLUSIONS: We conclude that U6 snRNA and miR-16 are the most suitable reference RNAs for normalizing miRNA expression, as they are relatively stable with strain, exposure to cyclic hyperoxia, and developmental stage in a rat model of OIR.


Assuntos
Hiperóxia/genética , Estabilidade de RNA/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Retina/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Camundongos , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Retina/crescimento & desenvolvimento , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/metabolismo
6.
Anal Biochem ; 430(2): 108-10, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22929699

RESUMO

Loading controls are necessary for semiquantitative Western blotting to compensate for loading errors. Loading control methods include the reprobing of membranes with an antibody against a constitutively expressed protein or staining the membrane with a total protein stain. We compared the loading control performance of recently released Stain-Free (SF) gels with Sypro Ruby (SR) and reprobing using ß-actin. SF gels demonstrated superior performance in that they were faster, required fewer steps and consumables, and allowed the quality of electrophoresis and Western transfer to be assessed before committing to costly and time-consuming Western blots.


Assuntos
Actinas/química , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Actinas/metabolismo , Animais , Anticorpos/imunologia , Western Blotting , Corantes/química , Immunoblotting/instrumentação , Compostos Organometálicos/química , Ratos , Retina/metabolismo , Razão Sinal-Ruído
7.
Front Immunol ; 13: 850226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464424

RESUMO

Glioblastoma is the most common and aggressive form of primary brain cancer, with no improvements in the 5-year survival rate of 4.6% over the past three decades. T-cell-based immunotherapies such as immune-checkpoint inhibitors and chimeric antigen receptor T-cell therapy have prolonged the survival of patients with other cancers and have undergone early-phase clinical evaluation in glioblastoma patients. However, a major challenge for T-cell-based immunotherapy of glioblastoma and other solid cancers is T-cell infiltration into tumours. This process is mediated by chemokine-chemokine receptor and integrin-adhesion molecule interactions, yet the specific nature of the molecules that may facilitate T-cell homing into glioblastoma are unknown. Here, we have characterised chemokine receptor and integrin expression profiles of endogenous glioblastoma-infiltrating T cells, and the chemokine expression profile of glioblastoma-associated cells, by single-cell RNA-sequencing. Subsequently, chemokine receptors and integrins were validated at the protein level to reveal enrichment of receptors CCR2, CCR5, CXCR3, CXCR4, CXCR6, CD49a, and CD49d in glioblastoma-infiltrating T-cell populations relative to T cells in matched patient peripheral blood. Complementary chemokine ligand expression was then validated in glioblastoma biopsies and glioblastoma-derived primary cell cultures. Together, enriched expression of homing receptor-ligand pairs identified in this study implicate a potential role in mediating T-cell infiltration into glioblastoma. Importantly, our data characterising the migratory receptors on endogenous tumour-infiltrating T cells could be exploited to enhance the tumour-homing properties of future T-cell immunotherapies for glioblastoma.


Assuntos
Glioblastoma , Quimiocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Integrinas/metabolismo , Ligantes , Subpopulações de Linfócitos T
8.
Neoplasia ; 24(1): 1-11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826777

RESUMO

The introduction of the proteasome inhibitor bortezomib into treatment regimens for myeloma has led to substantial improvement in patient survival. However, whilst bortezomib elicits initial responses in many myeloma patients, this haematological malignancy remains incurable due to the development of acquired bortezomib resistance. With other patients presenting with disease that is intrinsically bortezomib resistant, it is clear that new therapeutic approaches are desperately required to target bortezomib-resistant myeloma. We have previously shown that targeting sphingolipid metabolism with the sphingosine kinase 2 (SK2) inhibitor K145 in combination with bortezomib induces synergistic death of bortezomib-naïve myeloma. In the current study, we have demonstrated that targeting sphingolipid metabolism with K145 synergises with bortezomib and effectively resensitises bortezomib-resistant myeloma to this proteasome inhibitor. Notably, these effects were dependent on enhanced activation of the unfolded protein response, and were observed in numerous separate myeloma models that appear to have different mechanisms of bortezomib resistance, including a new bortezomib-resistant myeloma model we describe which possesses a clinically relevant proteasome mutation. Furthermore, K145 also displayed synergy with the next-generation proteasome inhibitor carfilzomib in bortezomib-resistant and carfilzomib-resistant myeloma cells. Together, these findings indicate that targeting sphingolipid metabolism via SK2 inhibition may be effective in combination with a broad spectrum of proteasome inhibitors in the proteasome inhibitor resistant setting, and is an approach worth clinical exploration.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteassoma/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Bortezomib/química , Bortezomib/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/uso terapêutico , Técnicas de Inativação de Genes , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Relação Estrutura-Atividade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36167468

RESUMO

BACKGROUND: Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. METHODS: We profiled an extensive biobank of patients' biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. RESULTS: Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. CONCLUSIONS: Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Receptores de Antígenos Quiméricos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Gangliosídeos/metabolismo , Glioblastoma/genética , Glioblastoma/terapia , Glioma/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Interleucina-15/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
10.
BMC Biomed Eng ; 3(1): 6, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33789767

RESUMO

BACKGROUND: Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2 mm of size, which need to be constantly agitated to allow proper oxygenation. The culture conditions are, therefore, not suitable for whole-brain organoid live imaging, required to study developmental processes and disease progression within physiologically relevant time frames (i.e. days, weeks, months). RESULTS: Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates high-resolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids. CONCLUSIONS: This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.

11.
Cancers (Basel) ; 12(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906280

RESUMO

Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.

12.
Nat Cell Biol ; 22(7): 882-895, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451439

RESUMO

It is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer-microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment. An analysis of tumours from patients and mice reveals that cysteine-rich with EGF-like domains 2 (CRELD2) is the paracrine factor that underlies PERK-mediated CAF education downstream of ROCK. We find that CRELD2 is regulated by PERK-regulated ATF4, and depleting CRELD2 suppressed tumour progression, demonstrating that the paracrine ROCK-PERK-ATF4-CRELD2 axis promotes the progression of breast cancer, with implications for cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Moléculas de Adesão Celular/metabolismo , Reprogramação Celular , Proteínas da Matriz Extracelular/metabolismo , eIF-2 Quinase/metabolismo , Quinases Associadas a rho/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Moléculas de Adesão Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Camundongos , Comunicação Parácrina , eIF-2 Quinase/genética , Quinases Associadas a rho/genética
14.
Clin Transl Immunology ; 9(10): e1191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082953

RESUMO

OBJECTIVES: Targeted immunotherapies such as chimeric antigen receptor (CAR)-T cells are emerging as attractive treatment options for glioblastoma, but rely on identification of a suitable tumor antigen. We validated a new target antigen for glioblastoma, fibroblast activation protein (FAP), by undertaking a detailed expression study of human samples. METHODS: Glioblastoma and normal tissues were assessed using immunostaining, supported by analyses of published transcriptomic datasets. Short-term cultures of glioma neural stem (GNS) cells were compared to cultures of healthy astrocytes and neurons using flow cytometry. Glioblastoma tissues were dissociated and analysed by high-parameter flow cytometry and single-cell transcriptomics (scRNAseq). RESULTS: Compared to normal brain, FAP was overexpressed at the gene and protein level in a large percentage of glioblastoma tissues, with highest levels of expression associated with poorer prognosis. FAP was also overexpressed in several paediatric brain cancers. FAP was commonly expressed by cultured GNS cells but absent from normal neurons and astrocytes. Within glioblastoma tissues, the strongest expression of FAP was around blood vessels. In fact, almost every tumor vessel was highlighted by FAP expression, whereas normal tissue vessels and cultured endothelial cells (ECs) lacked expression. Single-cell analyses of dissociated tumors facilitated a detailed characterisation of the main cellular components of the glioblastoma microenvironment and revealed that vessel-localised FAP is because of expression on both ECs and pericytes. CONCLUSION: Fibroblast activation protein is expressed by multiple cell types within glioblastoma, highlighting it as an ideal immunotherapy antigen to target destruction of both tumor cells and their supporting vascular network.

15.
Oncogene ; 38(8): 1151-1165, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30250299

RESUMO

While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.


Assuntos
Dineínas do Citoplasma/genética , Genes Supressores de Tumor , Glioblastoma/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Células HEK293 , Humanos , Lisofosfolipídeos/genética , Camundongos , Esfingosina/análogos & derivados , Esfingosina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Immunol Methods ; 336(2): 246-50, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18538340

RESUMO

Single chain antibody fragment genes are commonly created by splicing together the immunoglobulin light chain (VL) and heavy chain variable (VH) genes of a monoclonal antibody produced by a hybridoma. Selective PCR amplification of the functional immunoglobulin variable gene rearrangements can be complicated by the existence of other unproductive immunoglobulin gene rearrangements in the hybridoma. Here we report the detection and preferential amplification of aberrant transcripts from two unproductive VH gene rearrangements derived from the fusion partner of a hybridoma. The functional VH gene of the monoclonal antibody was successfully amplified by selective use of primers to individual JH segments.


Assuntos
Genes de Cadeia Pesada de Imunoglobulina , Região Variável de Imunoglobulina/genética , Reação em Cadeia da Polimerase/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Sequência de Bases , Rearranjo Gênico , Genes de Cadeia Leve de Imunoglobulina , Humanos , Hibridomas , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência , Fator A de Crescimento do Endotélio Vascular/imunologia
17.
J Biotechnol ; 129(3): 539-46, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17306402

RESUMO

We are investigating the use of single chain antibody fragments (scFv) in eye drops for diagnosis and treatment of eye diseases. For ocular use, recombinant proteins must be free of bacterial endotoxin that causes inflammation in the eye. We required a means of generating high yields of scFvs with little endotoxin contamination. Using microprojectile bombardment we produced transgenic lines of the commercial wheat variety, Westonia, that express two scFvs that bind to CD4 or CD28 on the surface of rat thymocytes. A high level of expression of active scFv in the range 50-180 microg/g was measured by quantitative flow cytometry in crude extracts made from mature seeds. The levels of expression were stable over four generations of transgenic plants and mature seeds were stored for one year with little loss of scFv activity. Substantial purification of scFv was achieved by immobilised metal affinity chromatography. Compared to bacterial extracts, crude transgenic seed extracts contained only a small amount of endotoxin (150 EU/ml) that will be easily removed by purification. The transgenic wheat lines express functional scFv at levels comparable to production in bacteria and promise to be superior to bacteria for production of scFv pharmaceuticals for ocular use.


Assuntos
Biotecnologia/métodos , Fragmentos de Imunoglobulinas/biossíntese , Imunoterapia/métodos , Triticum/genética , Animais , Biolística/métodos , Western Blotting , Cromatografia de Afinidade , Citometria de Fluxo , Fragmentos de Imunoglobulinas/genética , Plantas Geneticamente Modificadas , Ratos , Timo/citologia , Timo/imunologia , Triticum/imunologia
18.
Sci Rep ; 7(1): 12618, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974734

RESUMO

DEPDC5 mutations have recently been shown to cause epilepsy in humans. Evidence from in vitro studies has implicated DEPDC5 as a negative regulator of mTORC1 during amino acid insufficiency as part of the GATOR1 complex. To investigate the role of DEPDC5 in vivo we generated a null mouse model using targeted CRISPR mutagenesis. Depdc5 homozygotes display severe phenotypic defects between 12.5-15.5 dpc, including hypotrophy, anaemia, oedema, and cranial dysmorphology as well as blood and lymphatic vascular defects. mTORC1 hyperactivity was observed in the brain of knockout embryos and in fibroblasts and neurospheres isolated from knockout embryos and cultured in nutrient deprived conditions. Heterozygous mice appeared to be normal and we found no evidence of increased susceptibility to seizures or tumorigenesis. Together, these data support mTORC1 hyperactivation as the likely pathogenic mechanism that underpins DEPDC5 loss of function in humans and highlights the potential utility of mTORC1 inhibitors in the treatment of DEPDC5-associated epilepsy.


Assuntos
Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Convulsões/genética , Animais , Encéfalo/fisiopatologia , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Fibroblastos/patologia , Regulação da Expressão Gênica , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Convulsões/fisiopatologia , Transdução de Sinais/genética
19.
Int J Parasitol ; 35(9): 981-90, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15964573

RESUMO

Acanthamoeba species are ubiquitous soil and freshwater protozoa that have been associated with infections of the human brain, skin, lungs and eyes. Our aim was to develop specific antibodies to aid in rapid and specific diagnosis of clinically important isolates. Mice were variously immunised with live mixtures of Acanthamoeba castellanii strain 112 (AC112) trophozoites and cysts, or with sonicated, formalin-fixed or heat-treated trophozoites, or with a trophozoite membrane preparation. Eight hybridoma cell lines secreting monoclonal antibodies reactive with A. castellanii epitopes were generated. Seven of the new antibodies (designated AMEC1-3 and MTAC1-4) were isotyped as IgMkappa and one (MTAC5) as IgG1kappa. All of the novel antibodies bound to AC112 cysts, and MTAC4 and MTAC5 also bound to trophozoites as measured by flow cytometry on unfixed cells. Single chain antibody fragments that retained parental antibody binding characteristics were engineered from three of the hybridomas (AMEC1, MTAC3 and MTAC4). Four monoclonal antibodies (AMEC1, AMEC3, MTAC1, MTAC3) bound reliably to unfixed cysts of clinical isolates of A. castellanii (two strains) and Acanthamoeba polyphaga (two strains), belonging to Pussard-Pons morphological group II, and to Acanthamoeba lenticulata and Acanthamoeba culbertsoni, belonging to Pussard-Pons morphological group III. None of the antibodies bound to cysts or trophozoites of the environmental group I species, Acanthamoeba tubiashi. Antibodies AMEC1, MTAC3, MTAC4 and MTAC5 reacted with buffered formalin-fixed AC112 by immunohistochemistry, and also stained Acanthamoeba in sections of infected rat cornea and buffered formalin-fixed, paraffin-embedded infected human cornea. These antibodies may be useful in diagnosing pathogenic Acanthamoeba species in clinical specimens, provided that cysts are present.


Assuntos
Acanthamoeba/imunologia , Antígenos de Protozoários/análise , Acanthamoeba/classificação , Acanthamoeba/ultraestrutura , Ceratite por Acanthamoeba/diagnóstico , Ceratite por Acanthamoeba/parasitologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/genética , Especificidade de Anticorpos , Antígenos de Protozoários/imunologia , Sequência de Bases , Linhagem Celular , Córnea/parasitologia , Feminino , Citometria de Fluxo/métodos , Humanos , Imunização , Técnicas Imunoenzimáticas , Fragmentos de Imunoglobulinas/biossíntese , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Ratos , Especificidade da Espécie
20.
J Ocul Biol Dis Infor ; 2(4): 190-201, 2009 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-20157446

RESUMO

Different inbred strains of rat differ in their susceptibility to oxygen-induced retinopathy (OIR), an animal model of human retinopathy of prematurity. We examined gene expression in Sprague-Dawley (susceptible) and Fischer 344 (resistant) neonatal rats after 3 days exposure to cyclic hyperoxia or room air, using Affymetrix rat Genearrays. False discovery rate analysis was used to identify differentially regulated genes. Such genes were then ranked by fold change and submitted to the online database, DAVID. The Sprague-Dawley list returned the term "response to hypoxia," absent from the Fischer 344 output. Manual analysis indicated that many genes known to be upregulated by hypoxia-inducible factor-1alpha were downregulated by cyclic hyperoxia. Quantitative real-time RT-PCR analysis of Egln3, Bnip3, Slc16a3, and Hk2 confirmed the microarray results. We conclude that combined methodologies are required for adequate dissection of the pathophysiology of strain susceptibility to OIR in the rat. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12177-009-9041-7) contains supplementary material, which is available to authorized users.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa