Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774681

RESUMO

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Assuntos
Doença de Alzheimer , Lobo Frontal , Microglia , Neurônios , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Microglia/patologia , Neurônios/patologia , Células Piramidais , Biópsia , Lobo Frontal/patologia , Análise da Expressão Gênica de Célula Única , Núcleo Celular/metabolismo , Núcleo Celular/patologia
2.
Nature ; 631(8019): 142-149, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926573

RESUMO

Interindividual genetic variation affects the susceptibility to and progression of many diseases1,2. However, efforts to study how individual human brains differ in normal development and disease phenotypes are limited by the paucity of faithful cellular human models, and the difficulty of scaling current systems to represent multiple people. Here we present human brain Chimeroids, a highly reproducible, multidonor human brain cortical organoid model generated by the co-development of cells from a panel of individual donors in a single organoid. By reaggregating cells from multiple single-donor organoids at the neural stem cell or neural progenitor cell stage, we generate Chimeroids in which each donor produces all cell lineages of the cerebral cortex, even when using pluripotent stem cell lines with notable growth biases. We used Chimeroids to investigate interindividual variation in the susceptibility to neurotoxic triggers that exhibit high clinical phenotypic variability: ethanol and the antiepileptic drug valproic acid. Individual donors varied in both the penetrance of the effect on target cell types, and the molecular phenotype within each affected cell type. Our results suggest that human genetic background may be an important mediator of neurotoxin susceptibility and introduce Chimeroids as a scalable system for high-throughput investigation of interindividual variation in processes of brain development and disease.


Assuntos
Córtex Cerebral , Quimera , Predisposição Genética para Doença , Neurotoxinas , Organoides , Feminino , Humanos , Masculino , Linhagem da Célula/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Quimera/genética , Etanol/efeitos adversos , Etanol/toxicidade , Variação Genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurotoxinas/toxicidade , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Doadores de Tecidos , Ácido Valproico/efeitos adversos , Ácido Valproico/toxicidade , Predisposição Genética para Doença/genética
3.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38558987

RESUMO

Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow uncovering cell-state-specific responses to perturbations, a crucial aspect in unraveling the intricate molecular mechanisms governing cellular behavior and potentially discovering novel regulatory pathways and therapeutic targets. However, prevailing computational methods predominantly focus on predicting average cellular responses, disregarding the inherent response heterogeneity associated with cell state diversity. In this study, we present CellCap, a deep generative model designed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into a set of transcriptional response programs. These programs are then utilized by each perturbation condition and each cell at varying degrees. The incorporation of specific model design choices, such as dot-product cross-attention between cell states and response programs, along with a linearly-decoded latent space, underlay the interpretation power of CellCap. We evaluate CellCap's model interpretability through multiple simulated scenarios and apply it to two real single-cell perturbation datasets. These datasets feature either heterogeneous cellular populations or a complex experimental setup. Our results demonstrate that CellCap successfully uncovers the relationship between cell state and perturbation response, unveiling novel insights overlooked in previous analyses. The model's interpretability, coupled with its effectiveness in capturing heterogeneous responses, positions CellCap as a valuable tool for advancing our understanding of cellular behaviors in the context of perturbation experiments.

4.
Nat Commun ; 15(1): 347, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184653

RESUMO

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Locos de Características Quantitativas , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Núcleo Celular , Forma Celular , Proteínas Mutantes
5.
Cell Rep Med ; 4(12): 101309, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38086379

RESUMO

Cutaneous neurofibromas (cNFs) are tumors that develop in more than 99% of individuals with neurofibromatosis type 1 (NF1). They develop in the dermis and can number in the thousands. cNFs can be itchy and painful and negatively impact self-esteem. There is no US Food and Drug Administration (FDA)-approved drug for their treatment. Here, we screen a library of FDA-approved drugs using a cNF cell model derived from human induced pluripotent stem cells (hiPSCs) generated from an NF1 patient. We engineer an NF1 mutation in the second allele to mimic loss of heterozygosity, differentiate the NF1+/- and NF1-/- hiPSCs into Schwann cell precursors (SCPs), and use them to screen a drug library to assess for inhibition of NF1-/- but not NF1+/- cell proliferation. We identify econazole nitrate as being effective against NF1-/- hiPSC-SCPs. Econazole cream selectively induces apoptosis in Nf1-/- murine nerve root neurosphere cells and human cNF xenografts. This study supports further testing of econazole for cNF treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurofibroma , Neurofibromatose 1 , Neoplasias Cutâneas , Estados Unidos , Humanos , Animais , Camundongos , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Econazol , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurofibroma/genética , Neurofibroma/metabolismo , Neurofibroma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Apoptose/genética
6.
Cell Rep ; 42(1): 111988, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640364

RESUMO

The maturation of neurons and the development of synapses, although emblematic of neurons, also relies on interactions with astrocytes and other glia. Here, to study the role of glia-neuron interactions, we analyze the transcriptomes of human pluripotent stem cell (hPSC)-derived neurons, from 80 human donors, that were cultured with or without contact with glial cells. We find that the presence of astrocytes enhances synaptic gene-expression programs in neurons when in physical contact with astrocytes. These changes in neurons correlate with increased expression, in the cocultured glia, of genes that encode synaptic cell adhesion molecules. Both the neuronal and astrocyte gene-expression programs are enriched for genes associated with schizophrenia risk. Our results suggest that astrocyte-expressed genes with synaptic functions are associated with stronger expression of synaptic genetic programs in neurons, and they suggest a potential role for astrocyte-neuron interactions in schizophrenia.


Assuntos
Astrócitos , Esquizofrenia , Humanos , Astrócitos/metabolismo , Adesão Celular/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Neurônios/metabolismo , Neuroglia , Sinapses/fisiologia
7.
iScience ; 26(7): 106995, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534135

RESUMO

Emerging evidence of species divergent features of astrocytes coupled with the relative inaccessibility of human brain tissue underscore the utility of human pluripotent stem cell (hPSC) technologies for the generation and study of human astrocytes. However, existing approaches for hPSC-astrocyte generation are typically lengthy or require intermediate purification steps. Here, we establish a rapid and highly scalable method for generating functional human induced astrocytes (hiAs). These hiAs express canonical astrocyte markers, respond to pro-inflammatory stimuli, exhibit ATP-induced calcium transients and support neuronal network development. Moreover, single-cell transcriptomic analyses reveal the generation of highly reproducible cell populations across individual donors, mostly resembling human fetal astrocytes. Finally, hiAs generated from a trisomy 21 disease model identify expected alterations in cell-cell adhesion and synaptic signaling, supporting their utility for disease modeling applications. Thus, hiAs provide a valuable and practical resource for the study of basic human astrocyte function and dysfunction in disease.

8.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333365

RESUMO

Cellular perturbations underlying Alzheimer's disease are primarily studied in human postmortem samples and model organisms. Here we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of Alzheimer's disease pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the Early Cortical Amyloid Response-were prominent in neurons, wherein we identified a transient state of hyperactivity preceding loss of excitatory neurons, which correlated with the selective loss of layer 1 inhibitory neurons. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathological burden increased. Lastly, both oligodendrocytes and pyramidal neurons upregulated genes associated with amyloid beta production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.

9.
Stem Cell Reports ; 18(1): 237-253, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563689

RESUMO

In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells. Transcriptional profiling of these astrocytes confirmed the homogeneity of this population of dorsal fetal-like astrocytes. Using a novel ELISA-based small-molecule screen, we identified epigenetic regulators, as well as inhibitors of intracellular signaling pathways, able to modulate C4 secretion from astrocytes. We then built a connectivity map to predict and validate additional key regulatory pathways, including one involving c-Jun-kinase. This work provides a foundation for developing therapies for CNS diseases involving the complement cascade.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Astrócitos/metabolismo , Células-Tronco , Feto , Células-Tronco Pluripotentes Induzidas/metabolismo
10.
Cell Stem Cell ; 30(3): 312-332.e13, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36796362

RESUMO

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Assuntos
Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Humanos , Células-Tronco Neurais/metabolismo , Diferenciação Celular/genética , Encéfalo/metabolismo , Zika virus/metabolismo , Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
J Mol Biol ; 434(3): 167221, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474087

RESUMO

Since their discovery 15 years ago, human pluripotent stem cell (hPSC) technologies have begun to revolutionize science and medicine, rapidly expanding beyond investigative research to drug discovery and development. Efforts to leverage hPSCs over the last decade have focused on increasing both the complexity and in vivo fidelity of human cellular models through enhanced differentiation methods. While these evolutions have fostered novel insights into disease mechanisms and influenced clinical drug discovery and development, there are still several considerations that limit the utility of hPSC models. In this review, we highlight important, yet underexplored avenues to broaden their reach. We focus on (i) the importance of diversifying existing hPSC collections, and their utilization to investigate therapeutic strategies in individuals from different genetic backgrounds, ancestry and sex; (ii) considerations for the selection of therapeutically relevant hPSC-based models; (iii) strategies to adequately increase the scale of cell-based studies; and (iv) the advances and constraints of clinical trials in a dish. Moreover, we advocate for harnessing the translational capabilities of hPSC models along with the use of innovative, scalable approaches for understanding genetic biases and the impact of sex and ancestry on disease mechanisms and drug efficacy and response. The next decade of hPSC innovation is poised to provide vast insights into the genetic basis of human disease and enable rapid advances to develop, repurpose, and ensure the safety of the next generation of disease therapies across diverse human populations.


Assuntos
Variação Genética , Testes Farmacogenômicos , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos
12.
Nat Commun ; 13(1): 3690, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760976

RESUMO

It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.


Assuntos
Síndrome de DiGeorge , Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Linhagem Celular , Síndrome de DiGeorge/genética , Humanos , Neurônios , RNA , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa