Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 39: 102861, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35421600

RESUMO

Here we have synthesized water soluble and biocompatible carbon dots (CDs) from taurine via thermal decomposition method. The CDs showed nearly spherical shape with diameter less than 10 nm. The CDs exhibited excitation dependent fluorescence emission and could be used for mammalian cell imaging. The CDs showed excellent DPPH and hydrogen peroxide radical scavenging activity in cell free system. Besides, the CDs also displayed significant intracellular radical scavenging activity in human normal kidney epithelial (NKE) cells. Furthermore, nanohybrids consisting of both CDs and nanoceria (CeO2) were prepared and tested for their biomedical applications. The nanohybrids showed significant antioxidant activities in both cell free and intracellular conditions. The CDs and nanohybrids possessed very little toxicity upto the concentration of 100 µg/mL when treated for 24 hours in human NKE cells. The CDs as well as nanohybrids further displayed significant bacterial growth inhibition against both gram-positive and gram-negative bacteria under dark as well as light illumination condition via the bacterial membrane damage. However, under the light illumination, the bacterial growth inhibition of CDs and nanohybrids was further enhanced due to the generation of reactive oxygen radicals and subsequent DNA degradation. A higher dose-dependent intracellular antioxidant and antibacterial activities of the nanohybrid is attributed to the synergistic effect of nanoceria and CDs. All these results clearly reflected that our synthesized CDs and their nanohybrids can be used for several biomedical applications.


Assuntos
Carbono , Fotoquimioterapia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Mamíferos , Fotoquimioterapia/métodos , Taurina
2.
J Control Release ; 330: 132-150, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33340566

RESUMO

Carbon dots (CDs) are the most promising candidates of the carbon family with superior properties like ultra-small size, high aqueous solubility, low cytotoxicity, and inherent photoluminescence which makes them suitable for diverse biomedical applications. Methods have been developed to enhance their applications. Doping/surface passivation of CDs improves their physicochemical properties, visible light absorption probability, and quantum yield by controlling their size, morphology, structure, and band-gap energy. Recently, metal-doped CDs have emerged as an important class of nanomaterials with numerous biomedical applications. Additionally, the conjugation of CDs with semiconductor metal-oxide nanoparticles (NPs) enhances their free radical production rates under visible light irradiation. Conjugation of fluorescent CDs with magnetic NPs leads to the development of multimodal imaging platforms. Similarly, ternary conjugates composed of fluorescent CDs, near-infrared (NIR) responsive, and magnetic NPs are useful for multi-modal imaging-guided, and NIR-responsive synergistic chemo-phototherapy. However, no comprehensive review is published yet which covers metal-doped and hybrid CDs. Therefore, herein we provide detailed information about their synthesis and important biomedical applications. Firstly, we have covered various synthesis methods for CD conjugation including the critical analysis of the effects of the reaction conditions and doping/conjugation on the structure and properties of the CDs. Then we have extensively reviewed their biomedical applications as antimicrobial, antioxidant, and bioimaging agents, and in the field of cancer phototherapy with special emphasis on their mechanisms of actions. Finally, the future directions of research and the applications of the metal-doped and hybrid CDs have been discussed. We believe that this review article will enrich the understanding of different synthetic routes of CD-nanocomposites and their biomedical applications.


Assuntos
Nanoestruturas , Fotoquimioterapia , Pontos Quânticos , Carbono , Metais
3.
Adv Colloid Interface Sci ; 295: 102495, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34375877

RESUMO

Recently, zinc oxide nanoparticles (ZnONPs) are gaining much interest of nanobiotechnologists due to their profound biomedical applications. ZnONPs are used as antibacterial agents, which cause both gram-positive and negative bacterial cell death through the generation of reactive free radicals as well as membrane rupture. ZnONPs show excellent antioxidant properties in normal mammalian cells via the scavenging of reactive free radicals and up-regulation of antioxidant enzyme activities. Besides, it also shows hypoglycaemic effect in diabetic animals via pancreatic ß-cells mediated increased insulin secretion and glucose uptake by liver, skeletal muscles and adipose tissues. Among the other potential applications, ZnONPs-induced bone and soft-tissue regeneration open a new horizon in the field of tissue engineering. Here, first we reviewed the complete synthesis routes of ZnONPs by physical, chemical, and biological pathways as well as outlined the advantages and disadvantages of the techniques. Further, we discussed the several important aspects of physicochemical analysis of ZnONPs. Additionally, we extensively reviewed the important biomedical applications of ZnONPs as antibacterial, antioxidant, and antidiabetic agents, and in the field of tissue engineering with special emphasis on their mechanisms of actions. Furthermore, the future perspectives of the ZnONPs are also discussed.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Óxido de Zinco/farmacologia
4.
Adv Colloid Interface Sci ; 275: 102046, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757388

RESUMO

Fluorescent carbon dots (CDs) are an emerging class of nanomaterials in the carbon family. There are various inexpensive and renewable resources that can be used to synthesize green CDs, which have received immense attention from researchers because of their improved aqueous solubility, high biocompatibility, and eco-friendly nature compared with chemically derived CDs. Additional surface passivation is not required, as heteroatoms are present on the surface of green CDs in the form of amine, hydroxyl, carboxyl, or thiol functional groups, which can improve their physicochemical properties, quantum yield, and the probability of visible light absorption. Green CDs have potential applications in the fields of bioimaging, drug/gene delivery systems, catalysis, and sensing. Since their discovery, there have been several review articles that describe the synthesis of green CDs and some of their applications. However, there are no review articles describing the synthesis and complete applications of green CDs. Here, we provide detailed information regarding their synthesis and applications based on the available literature. In addition, we discuss some of the less explored applications of green CDs and the challenges that remain to be overcome.

5.
J Fungi (Basel) ; 6(4)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317038

RESUMO

Research and innovation in nanoparticles (NPs) synthesis derived from biomaterials have gained much attention due to their unique characteristics, such as low-cost, easy synthesis methods, high water solubility, and eco-friendly nature. NPs derived from macrofungi, including various mushroom species, such as Agaricus bisporus, Pleurotus spp., Lentinus spp., and Ganoderma spp. are well known to possess high nutritional, immune-modulatory, antimicrobial (antibacterial, antifungal and antiviral), antioxidant, and anticancerous properties. Fungi have intracellular metal uptake ability and maximum wall binding capacity; because of which, they have high metal tolerance and bioaccumulation ability. Primarily, two methods have been comprehended in the literature to synthesize metal NPs from macrofungi, i.e., the intracellular method, which refers to NP synthesis inside fungal cells by transportation of ions in the presence of enzymes; and the extracellular method, which refers to the treatment of fungal biomolecules aqueous filtrate with a metal precursor. Pleurotus derived metal NPs are known to inhibit the growth of numerous foodborne pathogenic bacteria and fungi. To the best of our knowledge, there is no such review article reported in the literature describing the synthesis and complete application and mechanism of NPs derived from macrofungi. Herein, we intend to summarize the progressive research on macrofungi derived NPs regarding their synthesis as well as applications in the area of antimicrobial (antibacterial & antifungal), anticancer, antioxidant, catalytic and food preservation. Additionally, the challenges associated with NPs synthesis will also be discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa