RESUMO
BACKGROUND: The ability of the right ventricle (RV) to adapt to an increased pressure afterload determines survival in patients with pulmonary arterial hypertension. At present, there are no specific treatments available to prevent RV failure, except for heart/lung transplantation. The wingless/int-1 (Wnt) signaling pathway plays an important role in the development of the RV and may also be implicated in adult cardiac remodeling. METHODS: Molecular, biochemical, and pharmacological approaches were used both in vitro and in vivo to investigate the role of Wnt signaling in RV remodeling. RESULTS: Wnt/ß-catenin signaling molecules are upregulated in RV of patients with pulmonary arterial hypertension and animal models of RV overload (pulmonary artery banding-induced and monocrotaline rat models). Activation of Wnt/ß-catenin signaling leads to RV remodeling via transcriptional activation of FOSL1 and FOSL2 (FOS proto-oncogene [FOS] like 1/2, AP-1 [activator protein 1] transcription factor subunit). Immunohistochemical analysis of pulmonary artery banding -exposed BAT-Gal (ß-catenin-activated transgene driving expression of nuclear ß-galactosidase) reporter mice RVs exhibited an increase in ß-catenin expression compared with their respective controls. Genetic inhibition of ß-catenin, FOSL1/2, or WNT3A stimulation of RV fibroblasts significantly reduced collagen synthesis and other remodeling genes. Importantly, pharmacological inhibition of Wnt signaling using inhibitor of PORCN (porcupine O-acyltransferase), LGKK-974 attenuated fibrosis and cardiac hypertrophy leading to improvement in RV function in both, pulmonary artery banding - and monocrotaline-induced RV overload. CONCLUSIONS: Wnt- ß-Catenin-FOSL signaling is centrally involved in the hypertrophic RV response to increased afterload, offering novel targets for therapeutic interference with RV failure in pulmonary hypertension.
Assuntos
Insuficiência Cardíaca , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Remodelação Ventricular , beta Catenina , Cateninas , Monocrotalina/toxicidade , Transdução de Sinais , Modelos Animais de Doenças , Função Ventricular DireitaRESUMO
RATIONALE: While sex differences in right heart phenotypes have been observed, the molecular drivers remain unknown. OBJECTIVES: To provide biological insights into sex differences in the structure and function of the right ventricle (RV) using common genetic variation. METHODS: RV phenotypes were obtained from cardiac magnetic resonance imaging in 18,156 women and 16,171 men from the UK Biobank. Observational analyses and sex-stratified genome-wide association studies were performed. Candidate female-specific loci were evaluated against invasively measured cardiac performance in 479 female patients with idiopathic or heritable pulmonary arterial hypertension (PAH), recruited to the UK NIHR BioResource Rare Diseases study. MEASUREMENTS AND MAIN RESULTS: Sex was associated with differences in RV volumes and ejection fraction in models adjusting for left heart counterparts, blood pressure, lung function and sex hormone levels. Six genome-wide significant loci (13%) revealed heterogeneity of allelic effects between women and men, and significant sex-by-genotype interaction. These included two sex-specific candidate loci present in women only: a locus for RV ejection fraction in BMPR1A and a locus for RV end-systolic volume near DMRT2. Epigenetic data in RV tissue indicate that variation at the BMPR1A locus likely alters transcriptional regulation. In female patients with PAH, a variant located in the promoter of BMPR1A was significantly associated with cardiac index (effect size 0.16 l/min/m2), despite similar RV afterload. CONCLUSIONS: BMPR1A has emerged as a biologically plausible candidate gene for female-specific genetic determination of RV function, showing associations with cardiac performance under chronically increased afterload in female patients with PAH.
RESUMO
BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS: After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS: C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-ß1 (transforming growth factor ß1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS: This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.
Assuntos
Hipertensão Pulmonar , Animais , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Osteonectina/genética , Artéria Pulmonar , Remodelação Vascular/genéticaRESUMO
BACKGROUND: Pulmonary vascular disease (PVD) affects the majority of preterm neonates with bronchopulmonary dysplasia (BPD) and significantly determines long-term mortality through undetected progression into pulmonary hypertension. Our objectives were to associate characteristics of pulmonary artery (PA) flow and cardiac function with BPD-associated PVD near term using advanced magnetic resonance imaging (MRI) for improved risk stratification. METHODS: Preterms <32â weeks postmenstrual age (PMA) with/without BPD were clinically monitored including standard echocardiography and prospectively enrolled for 3â T MRI in spontaneous sleep near term (AIRR (Attention to Infants at Respiratory Risks) study). Semi-manual PA flow quantification (phase-contrast MRI; no BPD n=28, mild BPD n=35 and moderate/severe BPD n=25) was complemented by cardiac function assessment (cine MRI). RESULTS: We identified abnormalities in PA flow and cardiac function, i.e. increased net forward volume right/left ratio, decreased mean relative area change and pathological right end-diastolic volume, to sensitively detect BPD-associated PVD while correcting for PMA (leave-one-out area under the curve 0.88, sensitivity 0.80 and specificity 0.81). We linked these changes to increased right ventricular (RV) afterload (RV-arterial coupling (p=0.02), PA mid-systolic notching (t2; p=0.015) and cardiac index (p=1.67×10-8)) and correlated echocardiographic findings. Identified in moderate/severe BPD, we successfully applied the PA flow model in heterogeneous mild BPD cases, demonstrating strong correlation of PVD probability with indicators of BPD severity, i.e. duration of mechanical ventilation (rs=0.63, p=2.20×10-4) and oxygen supplementation (rs=0.60, p=6.00×10-4). CONCLUSIONS: Abnormalities in MRI PA flow and cardiac function exhibit significant, synergistic potential to detect BPD-associated PVD, advancing the possibilities of risk-adapted monitoring.
Assuntos
Displasia Broncopulmonar , Hipertensão Pulmonar , Doenças Vasculares , Recém-Nascido , Lactente , Humanos , Artéria Pulmonar/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Displasia Broncopulmonar/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doenças Vasculares/complicaçõesRESUMO
Pulmonary hypertension (PH) is a multifactorial pulmonary vascular disease. PH associated with pre-existing lung disease is common and classified as group 3 in the clinical classification. Patients with chronic obstructive or interstitial lung disease are most likely to develop PH, with up to 20% of patients showing signs of PH. Distinguishing between the symptoms of the underlying lung disease and concomitant PH can be difficult. Clinical assessment, lung function tests, laboratory tests, and echocardiography can be helpful. The hemodynamic definition of PH has recently been changed. PH associated with lung disease is a pre-capillary form by definition. A special sub-stratification in group 3 is the differentiation of hemodynamic severity. Severe PH in group 3 is defined as a pulmonary vascular resistance (PVR) greater than 5 Wood units (WU). This pulmonary vascular phenotype is characterized by rather mild to moderate impairment of lung function or lung parenchymal destruction but with severe pulmonary vascular disease or right heart strain. Currently, there are no specific PH medications approved for group 3. However, the use of specific PH medications for the pulmonary vascular phenotype is being discussed in studies or on a case-by-case basis, while in patients with a PVR below 5 WU treatment focuses on the underlying disease.
Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Pulmão , Hemodinâmica , Resistência Vascular , EcocardiografiaRESUMO
PURPOSE OF THE REVIEW: Tricuspid regurgitation is associated with increased mortality in proportion to right ventricular adaptation to increased volume loading and pulmonary artery pressure. We here review recent progress in the understanding of right ventricular adaptation to pre- and after-loading conditions for improved recommendations of tricuspid valve repair. RECENT FINDINGS: Trans-catheter tricuspid valve repair has made the correction of tricuspid regurgitation more easily available, triggering a need of tighter indications. Several studies have shown the feasibility and relevance to the indications of tricuspid valve repair of imaging of right ventricular ejection fraction measured by magnetic resonance imaging or 3D-echocardiography, and the 2D-echocardiography of the tricuspid annular plane systolic excursion to systolic pulmonary artery pressure ratio combined with invasively determined mean pulmonary artery pressure and pulmonary vascular resistance. Improved definitions of right ventricular failure and pulmonary hypertension may be considered in future recommendations on the treatment of tricuspid regurgitation.
Assuntos
Insuficiência Cardíaca , Insuficiência da Valva Tricúspide , Humanos , Insuficiência da Valva Tricúspide/diagnóstico por imagem , Volume Sistólico , Função Ventricular Direita , EcocardiografiaRESUMO
A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.
Assuntos
Células Epiteliais Alveolares , Clatrina , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Clatrina/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Albumina Sérica/metabolismo , Alvéolos Pulmonares/metabolismoRESUMO
The new guidelines for the diagnosis and treatment of pulmonary hypertension include a new diagnostic algorithm and provide specific recommendations for the required diagnostic procedures, including screening methods. These recommendations are commented on by national experts under the auspices of the DACH. These comments provide additional decision support and background information, serving as a further guide for the complex diagnosis of pulmonary hypertension.
Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/terapia , AlgoritmosRESUMO
BACKGROUND: Post-cardiac surgery acute kidney injury (AKI) is associated with increased mortality. A high-protein meal enhances the renal blood flow and glomerular filtration rate (GFR) and might protect the kidneys from acute ischemic insults. Hence, we assessed the effect of a preoperative high-oral protein load on post-cardiac surgery renal function and used experimental models to elucidate mechanisms by which protein might stimulate kidney-protective effects. METHODS: The prospective "Preoperative Renal Functional Reserve Predicts Risk of AKI after Cardiac Operation" study follow-up was extended to postoperative 12 months for 109 patients. A 1:2 ratio propensity score matching method was used to identify a control group (n = 214) to comparatively evaluate the effects of a preoperative protein load and standard care. The primary endpoints were AKI development and postoperative estimated GFR (eGFR) loss at 3 and 12 months. We also assessed the secretion of tissue inhibitor of metalloproteases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7), biomarkers implicated in mediating kidney-protective mechanisms in human kidney tubular cells that we exposed to varying protein concentrations. RESULTS: The AKI rate did not differ between the protein loading and control groups (13.6 vs. 12.3%; p = 0.5). However, the mean eGFR loss was lower in the former after 3 months (0.1 [95% CI - 1.4, - 1.7] vs. - 3.3 [95% CI - 4.4, - 2.2] ml/min/1.73 m2) and 12 months (- 2.7 [95% CI - 4.2, - 1.2] vs - 10.2 [95% CI - 11.3, - 9.1] ml/min/1.73 m2; p < 0.001 for both). On stratification based on AKI development, the eGFR loss after 12 months was also found to be lower in the former (- 8.0 [95% CI - 14.1, - 1.9] vs. - 18.6 [95% CI - 23.3, - 14.0] ml/min/1.73 m2; p = 0.008). A dose-response analysis of the protein treatment of the primary human proximal and distal tubule epithelial cells in culture showed significantly increased IGFBP7 and TIMP-2 expression. CONCLUSIONS: A preoperative high-oral protein load did not reduce AKI development but was associated with greater renal function preservation in patients with and without AKI at 12 months post-cardiac surgery. The potential mechanisms of action by which protein loading may induce a kidney-protective response might include cell cycle inhibition of renal tubular epithelial cells. Clinical trial registration ClinicalTrials.gov: NCT03102541 (retrospectively registered on April 5, 2017) and ClinicalTrials.gov: NCT03092947 (retrospectively registered on March 28, 2017).
Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/etiologia , Biomarcadores , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Estudos de Coortes , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/fisiologia , Masculino , Complicações Pós-Operatórias , Estudos Prospectivos , Inibidor Tecidual de Metaloproteinase-2RESUMO
BACKGROUND: Persistent symptoms after initial COVID-19 infection are common and are frequently referred to by the umbrella terms "post-COVID syndrome" and "long COVID". The sheer number of affected patients pose an increasing challenge to healthcare systems worldwide. To date, our understanding of the pathophysiology of the post-COVID syndrome remains poor and the extent to which persistent cardiopulmonary abnormalities contribute to the symptom complex is unclear. We sought to determine the presence and impact of cardiopulmonary sequelae after COVID-19 in longitudinal assessment. METHODS: We report on 71 patients who underwent comprehensive, longitudinal testing in regular intervals for up to 12 months after their initial COVID-19 diagnosis. Testing included pulmonary function testing, cardiopulmonary exercise testing, dedicated left and right heart echocardiography, lung ultrasonography, and cardiac MRI. RESULTS: Our results demonstrate that subjective quality of life after COVID-19 (EQ-5D visual acuity scale, VAS, 67.4 for patients treated as outpatient, 79.2 for patients admitted to the general floor, 71.8 for patients treated in an ICU) is not related to the severity of the initial infection. Maximal exercise capacity is also reduced (VO2max 79% predicted, SD ± 19%); however, this is driven in large parts by patients who had initially required ICU-level of care. The degree of objective reduction in exertion did not correlate with quality of life scores. Pulmonary function testing revealed mild and persistent reduction in DLCO over the first 12 months without significant restrictive or obstructive lung disease. Left and right heart function was intact with good RV function and intact RV/PA coupling, imaging findings suggestive of myocarditis were uncommon (7% of patients). CONCLUSION: A reduction in exercise capacity after COVID-19 is common, but is most prominent in patients previously treated in the ICU and more likely related to deconditioning or fatigue than to cardiopulmonary impairment. Subjective quality of life scores are independent of the severity of initial infection and do not correlate with objective measures of cardiopulmonary function. In our cohort, persistent cardiopulmonary impairment after COVID-19 was uncommon. The post-COVID syndrome is unlikely to be the result of cardiopulmonary sequalae and may reflect a post-ICU syndrome in some. Trial registration Registered on clinicaltrials.gov (NCT04442789), Date: June 23, 2020.
Assuntos
COVID-19/complicações , Teste de Esforço , Qualidade de Vida , Teste para COVID-19 , Ecocardiografia , Humanos , Síndrome de COVID-19 Pós-AgudaRESUMO
Acute respiratory distress syndrome is often associated with elevated levels of CO2 (hypercapnia) and impaired alveolar fluid clearance. Misfolding of the Na,K-ATPase (NKA), a key molecule involved in both alveolar epithelial barrier tightness and resolution of alveolar edema, in the endoplasmic reticulum (ER) may decrease plasma membrane abundance of the transporter. Here, we investigated how hypercapnia affects the NKA ß-subunit (NKA-ß) in the ER. Exposing murine precision-cut lung slices and human alveolar epithelial A549 cells to elevated CO2 levels led to a rapid decrease of NKA-ß abundance in the ER and at the cell surface. Knockdown of ER mannosidase α class 1B member 1 and ER degradation-enhancing α-mannosidase like protein 1 by siRNA or treatment with the mannosidase α class 1B member 1 inhibitor kifunensine rescued loss of NKA-ß in the ER, suggesting ER-associated degradation (ERAD) of the enzyme. Furthermore, hypercapnia activated the unfolded protein response by promoting phosphorylation of inositol-requiring enzyme 1α (IRE1α), and treatment with an siRNA against IRE1α prevented the decrease of NKA-ß in the ER. Of note, the hypercapnia-induced phosphorylation of IRE1α was triggered by a Ca2+-dependent mechanism. In addition, inhibition of the inositol trisphosphate receptor decreased phosphorylation levels of IRE1α in precision-cut lung slices and A549 cells, suggesting that Ca2+ efflux from the ER might be responsible for IRE1α activation and ERAD of NKA-ß. In conclusion, here we provide evidence that hypercapnia attenuates maturation of the regulatory subunit of NKA by activating IRE1α and promoting ERAD, which may contribute to impaired alveolar epithelial integrity in patients with acute respiratory distress syndrome and hypercapnia.
Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Endorribonucleases/metabolismo , Hipercapnia/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Animais , Humanos , CamundongosRESUMO
Right ventricular (RV) function determines outcome in pulmonary arterial hypertension (PAH). RV pressure-volume loops, the gold standard for measuring RV function, are difficult to analyze. Our aim was to investigate whether simple assessments of RV pressure-volume loop morphology and RV systolic pressure differential reflect PAH severity and RV function. We analyzed multibeat RV pressure-volume loops (obtained by conductance catheterization with preload reduction) in 77 patients with PAH and 15 patients without pulmonary hypertension in two centers. Patients were categorized according to their pressure-volume loop shape (triangular, quadratic, trapezoid, or notched). RV systolic pressure differential was defined as end-systolic minus beginning-systolic pressure (ESP - BSP), augmentation index as ESP - BSP/pulse pressure, pulmonary arterial capacitance (PAC) as stroke volume/pulse pressure, and RV-arterial coupling as end-systolic/arterial elastance (Ees/Ea). Trapezoid and notched pressure-volume loops were associated with the highest afterload (Ea), augmentation index, pulmonary vascular resistance (PVR), mean pulmonary arterial pressure, stroke work, B-type natriuretic peptide, and the lowest Ees/Ea and PAC. Multivariate linear regression identified Ea, PVR, and stroke work as the main determinants of ESP - BSP. ESP - BSP also significantly correlated with multibeat Ees/Ea (Spearman's ρ: -0.518, P < 0.001). A separate retrospective analysis of 113 patients with PAH showed that ESP - BSP obtained by routine right heart catheterization significantly correlated with a noninvasive surrogate of RV-arterial coupling (tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure ratio; ρ: -0.376, P < 0.001). In conclusion, pressure-volume loop shape and RV systolic pressure differential predominately depend on afterload and PAH severity and reflect RV-arterial coupling in PAH.
Assuntos
Hipertensão Pulmonar/patologia , Volume Sistólico , Sístole , Resistência Vascular , Disfunção Ventricular Direita/complicações , Pressão Ventricular , Pressão Sanguínea , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.
Assuntos
COVID-19/virologia , Imunoglobulinas/deficiência , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Fatores de RiscoRESUMO
Various forms of diffuse parenchymal lung disease have been proposed as potential consequences of severe COVID19. We describe the clinical, radiological and histological findings of patients with COVID19-associated acute respiratory distress syndrome who later developed severe organising pneumonia including longitudinal follow-up. Our findings may have important implications for the therapeutic modalities in the late-phase of severe COVID19 and might partially explain why a subgroup of COVID19 patients benefits from systemic corticosteroids.
Assuntos
COVID-19/complicações , Pulmão/diagnóstico por imagem , Pneumonia/etiologia , SARS-CoV-2 , Idoso , Biópsia , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico , Tomografia Computadorizada por Raios XRESUMO
The aim of our study was to analyse the protein expression of cartilage intermediate layer protein (CILP)1 in a mouse model of right ventricular (RV) pressure overload and to evaluate CILP1 as a biomarker of cardiac remodelling and maladaptive RV function in patients with pulmonary hypertension (PH).Pulmonary artery banding was performed in 14 mice; another nine mice underwent sham surgery. CILP1 protein expression was analysed in all hearts using Western blotting and immunostaining. CILP1 serum concentrations were measured in 161 patients (97 with adaptive and maladaptive RV pressure overload caused by PH; 25 with left ventricular (LV) hypertrophy; 20 with dilative cardiomyopathy (DCM); 19 controls without LV or RV abnormalities)In mice, the amount of RV CILP1 was markedly higher after banding than after sham. Control patients had lower CILP1 serum levels than all other groups (p<0.001). CILP1 concentrations were higher in PH patients with maladaptive RV function than those with adaptive RV function (p<0.001), LV pressure overload (p<0.001) and DCM (p=0.003). CILP1 showed good predictive power for maladaptive RV in receiver operating characteristic analysis (area under the curve (AUC) 0.79). There was no significant difference between the AUCs of CILP1 and N-terminal pro-brain natriuretic peptide (NT-proBNP) (AUC 0.82). High CILP1 (cut-off value for maladaptive RV of ≥4373â pg·mL-1) was associated with lower tricuspid annular plane excursion/pulmonary artery systolic pressure ratios (p<0.001) and higher NT-proBNP levels (p<0.001).CILP1 is a novel biomarker of RV and LV pathological remodelling that is associated with RV maladaptation and ventriculoarterial uncoupling in patients with PH.
Assuntos
Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Biomarcadores , Ventrículos do Coração/diagnóstico por imagem , Humanos , Camundongos , Função Ventricular DireitaRESUMO
The functional relevance of right atrial (RA) function in pulmonary hypertension (PH) remains incompletely understood. The purpose of this study was to explore the correlation of cardiac magnetic resonance (CMR) feature tracking-derived RA phasic function with invasively measured pressure-volume (P-V) loop-derived right ventricular (RV) end-diastolic elastance (Eed) and RV-arterial coupling [ratio of end-systolic elastance to arterial elastance (Ees/Ea)]. In 54 patients with severe PH, CMR was performed within 24 h of diagnostic right heart catheterization and P-V measurements. RA phasic function was assessed by CMR imaging of RA reservoir, passive, and active strain. The association of RA phasic function with indexes of RV function was evaluated by Spearman's rank correlation and linear regression analyses. Median [interquartile range] RA reservoir strain, passive strain, and active strain were 19.5% [11.0-24.5], 7.0% [4.0-12.0], and 13.0% [7.0-18.5], respectively. Ees/Ea was 0.73 [0.48-1.08], and Eed was 0.14 mmHg/mL [0.05-0.22]. RV diastolic impairment [RV end-diastolic pressure (EDP) and Eed] was correlated with RA phasic function, but Ea and Ees were not. In addition, RA phasic function was correlated with inferior vena cava diameter. In multivariate linear regression analysis, adjusting for key P-V loop indexes, Eed and EDP remained significantly associated with RA phasic function. We conclude that RA phasic function is altered in relation to impaired diastolic function of the chronically overloaded right ventricle and contributes to backward venous flow and systemic congestion. These results call for more attention to RA function in the management of patients with PH.NEW & NOTEWORTHY There is growing awareness of the importance of the right atrial (RA)-right ventricular (RV) axis in pulmonary hypertension (PH). Our results uncover alterations in RA phasic function that are related to depressed RV lusitropic function and contribute to backward venous return and systemic congestion in chronic RV overload. Assessment of RA function should be part of the management and follow-up of patients with PH.
Assuntos
Função do Átrio Direito , Cateterismo Cardíaco , Hipertensão Pulmonar/diagnóstico , Imageamento por Ressonância Magnética , Disfunção Ventricular Direita/diagnóstico , Função Ventricular Direita , Adulto , Idoso , Feminino , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Pressão VentricularRESUMO
QUESTION ADDRESSED: Echocardiography is not currently considered as providing sufficient prognostic information to serve as an integral part of treatment goals in pulmonary arterial hypertension (PAH). We tested the hypothesis that incorporation of multiple parameters reflecting right heart function would improve the prognostic value of this imaging modality. METHODS AND MAIN RESULTS: We pooled individual patient data from a total of 517 patients (mean age 52±15â years, 64.8% females) included in seven observational studies conducted at five European and United States academic centres. Patients were subdivided into three groups representing progressive degrees of right ventricular dysfunction based on a combination of echocardiographic measurements, as follows. Group 1 (low risk): normal tricuspid annular plane systolic excursion (TAPSE) and nonsignificant tricuspid regurgitation (TR) (n=129); group 2 (intermediate risk): normal TAPSE and significant TR or impaired TAPSE and nondilated inferior vena cava (IVC) (n=256); group 3 (high risk): impaired TAPSE and dilated IVC (n=132). The 5-year cumulative survival rate was 82% in group 1, 63% in group 2 and 43% in group 3. Low-risk patients had better survival rates than intermediate-risk patients (log-rank Chi-squared 12.25; p<0.001) and intermediate-risk patients had better survival rates than high-risk patients (log-rank Chi-squared 26.25; p<0.001). Inclusion of other parameters such as right atrial area and pericardial effusion did not provide added prognostic value. ANSWER TO THE QUESTION: The proposed echocardiographic approach integrating the evaluation of TAPSE, TR grade and IVC is effective in stratifying the risk for all-cause mortality in PAH patients, outperforming the prognostic parameters suggested by current guidelines.
Assuntos
Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Adulto , Idoso , Ecocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Função Ventricular DireitaRESUMO
Aim: This study assessed the utility of SPARC-like protein 1 (SPARCL1) as a biomarker of maladaptive right ventricular (RV) function in patients with pulmonary hypertension (PH).Methods: In this prospective study, we examined SPARCL1 levels in 105 patients with adaptive (n = 34) and maladaptive RV (n = 32) pressure overload caused by PH, dilated cardiomyopathy (DCM, n = 18) with LVEF < 35% and preserved RV function and controls without LV or RV abnormalities (n = 21).Results: The median SPARCL1 concentration in patients with maladaptive RV function was higher than in those with adaptive RV function (p < 0.01), DCM (p < 0.001) or controls (p < 0.001). Patients with adaptive RV function had higher SPARCL1 concentrations than controls (p < 0.05), whereas there was no difference between adaptive RV and DCM. SPARCL1 showed good predictive power for maladaptive RV (AUC 0.77, p < 0.001) with an optimal cut-off value of 9.66 ng/ml. The TAPSE/PASP ratio was the only independent predictor of SPARCL1 ≥ 9.66 ng/ml in multivariable logistic regression analysis.Conclusion: SPARCL1 shows potential as novel biomarker of RV pathological remodelling and is associated with RV maladaptation and ventriculoarterial uncoupling in PH.