Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 165(4): 874-890.e10, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37263309

RESUMO

BACKGROUND & AIMS: Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans. METHODS: We evaluated the TGFß-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models. Single-cell RNA sequencing and immunofluorescence were used to evaluate changes in tumor cell state and the tumor microenvironment. RESULTS: Blockade of TGFß with chemotherapy reduced tumor burden in poorly immunogenic pancreatic cancer, without affecting the metastatic rate of cancer cells. Efficacy of combination therapy was not dependent on CD8 T cells, because response to TGFß blockade was preserved in CD8-depleted or recombination activating gene 2 (RAG2-/-) mice. TGFß blockade decreased total α-smooth muscle actin-positive fibroblasts but had minimal effect on fibroblast heterogeneity. Bulk RNA sequencing on tumor cells sorted ex vivo revealed that tumor cells treated with TGFß blockade adopted a classical lineage consistent with enhanced chemosensitivity, and immunofluorescence for cleaved caspase 3 confirmed that TGFß blockade increased chemotherapy-induced cell death in vivo. CONCLUSIONS: TGFß regulates pancreatic cancer cell plasticity between classical and basal cell states. TGFß blockade in orthotropic models of pancreatic cancer enhances sensitivity to chemotherapy by promoting a classical malignant cell state. This study provides scientific rationale for evaluation of NIS793 with FOLFIRINOX or gemcitabine/nanoparticle (albumin-bound) paclitaxel chemotherapy backbone in the clinical setting and supports the concept of manipulating cancer cell plasticity to increase the efficacy of combination therapy regimens.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Antineoplásicos/uso terapêutico , Gencitabina , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Albuminas , Fatores de Crescimento Transformadores/uso terapêutico , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Trends Cancer ; 9(9): 752-763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400315

RESUMO

Nutrients are essential for cell function. Immune cells operating in the complex tumor microenvironment (TME), which has a unique nutrient composition, face challenges of adapting their metabolism to support effector functions. We discuss the impact of nutrient availability on immune function in the tumor, competition between immune cells and tumor cells for nutrients, and how this is altered by diet. Understanding which diets can promote antitumor immune responses could open a new era of treatment, where dietary modifications can be used as an adjunct to boost the success of existing cancer therapies.


Assuntos
Dieta , Neoplasias , Humanos , Nutrientes , Neoplasias/patologia , Imunidade , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa