Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610276

RESUMO

It is important to achieve the 3D reconstruction of UAV remote sensing images in deep learning-based multi-view stereo (MVS) vision. The lack of obvious texture features and detailed edges in UAV remote sensing images leads to inaccurate feature point matching or depth estimation. To address this problem, this study improves the TransMVSNet algorithm in the field of 3D reconstruction by optimizing its feature extraction network and costumed body depth prediction network. The improvement is mainly achieved by extracting features with the Asymptotic Pyramidal Network (AFPN) and assigning weights to different levels of features through the ASFF module to increase the importance of key levels and also using the UNet structured network combined with an attention mechanism to predict the depth information, which also extracts the key area information. It aims to improve the performance and accuracy of the TransMVSNet algorithm's 3D reconstruction of UAV remote sensing images. In this work, we have performed comparative experiments and quantitative evaluation with other algorithms on the DTU dataset as well as on a large UAV remote sensing image dataset. After a large number of experimental studies, it is shown that our improved TransMVSNet algorithm has better performance and robustness, providing a valuable reference for research and application in the field of 3D reconstruction of UAV remote sensing images.

2.
Chem Soc Rev ; 51(19): 8174-8200, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36069165

RESUMO

Increasing social sustainability triggers the persistent progress of industrial catalysis in energy transformation and chemical production. Zeolites have been demonstrated to be pivotal catalysts in chemical industries due to their moderate acidity and versatile well-defined pore structures. However, in the context of enhancing the performances of zeolite catalysts, the perspectives on the diffusion regulations within the pores and channels in the bulk phases or external surfaces of the zeolites are often overlooked. Establishing the structure-transport-reactivity relationships in heterogeneous catalysis can provide rational guidelines to design high-performance catalysts. Herein, this tutorial review attempts to systematically depict an integrated picture of molecular transport behaviors in zeolite catalysts from macroscopic to microscopic perspectives. The advances in the accurate diffusion measurements employing both macroscopic and microscopic techniques are briefly introduced. The diffusion characteristics in zeolite catalysts under working conditions (e.g., high temperature, multi-components, and reaction coupling) are then addressed. The macroscopic internal diffusion and the microscopic diffusion occurring in the micro-zones of zeolite crystals (e.g., surface diffusion, diffusion anisotropy, and confined diffusion) are reviewed and discussed in more detail. These diffusion behaviors highly impact the underlying reaction mechanism, catalytic performances, and catalyst optimization strategies. Finally, the multi-type pore systems of practical zeolite catalysts in industrial reactors and their transport behaviors are analyzed. The fully-crystalline monolithic zeolites in the absence of binders are highlighted as rising-star catalytic materials for industrial applications. The research challenges in this field and the potential future development directions are summarized.

3.
Chemistry ; 28(58): e202203088, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36259924

RESUMO

Invited for the cover of this issue are Zaiku Xie, Jiawei Teng, Chuanming Wang, and co-workers at the SINOPEC Shanghai Research Institute of Petrochemical Technology, Liaoning Petrochemical University and University of Science and Technology of China. The image depicts the effect of eight organic additives on the anisotropic growth of classical ZSM-5 zeolite at the molecular level. Read the full text of the article at 10.1002/chem.202201781.

4.
Chemistry ; 28(58): e202201781, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36042004

RESUMO

Zeolite morphology plays a crucial role in affecting catalytic performance, while is persistently challenging to tailor through crystal anisotropic growth. It has been recognized that specific additives can be introduced into the synthesis of zeolites to achieve anisotropic growth, however their role and the underlying mechanism are not well understood. Herein, the effect of eight specific additives on the anisotropic growth of the ZSM-5 zeolite is unveiled within the framework of crystallization engineering. Either an inhibition effect or a promotion effect is revealed for each additive according to the crystallization kinetics. The adsorption preference of typical additives on different surfaces was demonstrated by total internal reflection fluorescence microscopy (TIRFM) and transmission X-ray microscopy (TXM) together with 3D reconstruction. The calculated adsorption energy difference between MFI [100]/[101] and [010] surfaces was proposed as a key descriptor to estimate the possible morphology induced by additive. ZSM-5 zeolites varying from sphere-like, plate-like to noodle-like morphology could be synthesized by employing specific additives with increasing adsorption strength difference on distinct surfaces.

5.
Chem Commun (Camb) ; 59(4): 470-473, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36519521

RESUMO

An efficient zeolite interface with optimized surface barriers was tailored by passivating the hydroxyl-group defects at surfaces or near pore mouths. The surface permeability of the modified zeolite was almost 90% greater than that of the pristine one, leading to remarkable improvements in C=2-3 selectivity and an anti-inactivation rate of 75% for the catalytic cracking reaction.

6.
Commun Chem ; 4(1): 107, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-36697565

RESUMO

Zeolite morphology is crucial in determining their catalytic activity, selectivity and stability, but quantitative descriptors of such a morphology effect are challenging to define. Here we introduce a descriptor that accounts for the morphology effect in the catalytic performances of H-ZSM-5 zeolite for C4 olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar sheet-like morphology but different c-axis lengths were synthesized. We found that the catalytic activity and stability is improved in samples with longer c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamics simulations, we show that the difference in catalytic performance can be attributed to the anisotropy of the intracrystalline diffusive propensity of the olefins in different channels. Our descriptor offers mechanistic insight for the design of highly effective zeolite catalysts for olefin cracking.

7.
RSC Adv ; 10(10): 5961-5971, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497458

RESUMO

HZSM-5 zeolite combined with unique zinc and phosphorus species, yields excellent selectivity (∼85%) to BTX (benzene, toluene, xylenes) in aromatic products. It was found that both zinc and phosphorus species were highly distributed in the pores of the zeolite channel network to form isolated zinc phosphate groups, which directly bond to the surface of zeolite, leading to a strong Lewis acidic center and an optimized surface acidity distribution favorable for BTX formation and the hydrothermal stability of the catalyst.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa