Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(23): 236401, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603171

RESUMO

The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition, and polaron effects in semiconductors, lifetime of hot carriers, transition temperature in BCS superconductors, and even spin relaxation in diamond nitrogen-vacancy centers for quantum information processing. However, due to the weak EPI strength, most phenomena have focused on electronic properties rather than on phonon properties. One prominent exception is the Kohn anomaly, where phonon softening can emerge when the phonon wave vector nests the Fermi surface of metals. Here we report a new class of Kohn anomaly in a topological Weyl semimetal (WSM), predicted by field-theoretical calculations, and experimentally observed through inelastic x-ray and neutron scattering on WSM tantalum phosphide. Compared to the conventional Kohn anomaly, the Fermi surface in a WSM exhibits multiple topological singularities of Weyl nodes, leading to a distinct nesting condition with chiral selection, a power-law divergence, and non-negligible dynamical effects. Our work brings the concept of the Kohn anomaly into WSMs and sheds light on elucidating the EPI mechanism in emergent topological materials.

2.
ACS Nano ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074189

RESUMO

van der Waals (vdW) magnets have rapidly emerged as a fertile playground for fundamental physics and exciting applications. Despite the impressive developments over the past few years, technical limitations pose a severe challenge to many other potential breakthroughs. High on the list is the lack of suitable experimental tools for studying spin dynamics on atomically thin samples. Here, Raman scattering techniques are employed to directly observe the low-lying magnon (∼1 meV) even in bilayer NiPS3. The advantage is that it offers excellent energy resolutions far better on low-energy sides than most inelastic neutron spectrometers can offer. More importantly, with appropriate theoretical analysis, the polarization dependence of the Raman scattering by those low-lying magnons also provides otherwise hidden information on the dominant spin-exchange scattering paths for different magnons. By comparing with high-resolution inelastic neutron scattering data, these low-energy Raman modes are confirmed to be indeed of magnon origin. Because of the different scattering mechanisms involved in inelastic neutron and Raman scattering, this information is fundamental in pinning down the final spin Hamiltonian. This work demonstrates the capability of Raman spectroscopy to probe the genuine two-dimensional spin dynamics in atomically thin vdW magnets, which can provide insights that are obscured in bulk spin dynamics.

3.
Bioelectrochemistry ; 129: 162-169, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176253

RESUMO

We investigate the interaction of horse heart cytochrome c (cyt c) with hematite nanowire array electrodes by cyclic voltammetry to study the electron transfer between redox active proteins and mineral surfaces. Using this model system, we quantify electron transfer rates between cyt c and hematite under varying electric potential and pH conditions. The results are consistent with two cyt c conformations adsorbed at the hematite surface: the native and a partially unfolded form. The partially unfolded protein maintained redox activity, but at a lower redox potential than the native protein. Adsorption of cyt c allowed direct electron transfer between cyt c and hematite, with an interfacial electron transfer rate, k°ET, of 0.4 s-1 for the native form and 0.55 s-1 for the partially unfolded protein at pH 7.07. At pH 4.66, protein adsorption decreased compared to neutral pH and the fraction of partially unfolded protein increased. Additionally, the diffusion controlled electron transfer rate between hematite and the electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) was determined to be k°ET = 8.0·10-3 cm·s-1 at pH 7.07. Modulation of electron transfer rates as a result of conformational changes by redox active proteins has broad implications for describing chemical transformations at biological-mineral interfaces.


Assuntos
Citocromos c/química , Compostos Férricos/química , Nanofios/química , Adsorção , Animais , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Cavalos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa