Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hematol ; 117(6): 830-838, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37129801

RESUMO

Cancer is a very rare event at the cellular level, although it is a common disease at the body level as one third of humans die of cancer. A small subset of cells in the body harbor the cellular features that constitute a permissive window for a particular genetic change to induce cancer. The significance of a permissive window is ironically best shown by a large number of failures in generating the animal model for acute myeloid leukemia (AML) with t(8;21). Over the decades, the RUNX1-ETO fusion gene created by t(8;21) has been introduced into various types of hematopoietic cells, largely at adult stage, in mice; however, all the previous attempts failed to generate tractable AML models. In stark contrast, we recently succeeded in inducing AML with the clinical features seen in human patients by specifically introducing RUNX1-ETO in childhood hematopoietic stem cells (HSCs). This result in mice is consistent with adolescent and young adult (AYA) onset in human t(8;21) patients, and suggests that childhood HSCs constitute the permissive window for RUNX1-ETO leukemogenesis. If loss of a permissive window is induced pharmacologically, cancer cells might be selectively targeted. Such a permissive window modifier may serve as a novel therapeutic drug.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Adolescente , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Translocação Genética , Leucemia Mieloide Aguda/genética , Células-Tronco Hematopoéticas
2.
Nat Commun ; 14(1): 281, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650155

RESUMO

Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes. The progressive shortening of steady-state telomere length in normal human somatic cells is a promising biomarker for age-associated diseases. However, there remain substantial challenges in quantifying telomere length due to the lack of high-throughput method with nucleotide resolution for individual telomere. Here, we describe a workflow to capture telomeres using newly designed telobaits in human culture cell lines as well as clinical patient samples and measure their length accurately at nucleotide resolution using single-molecule real-time (SMRT) sequencing. Our results also reveal the extreme heterogeneity of telomeric variant sequences (TVSs) that are dispersed throughout the telomere repeat region. The presence of TVSs disrupts the continuity of the canonical (5'-TTAGGG-3')n telomere repeats, which affects the binding of shelterin complexes at the chromosomal ends and telomere protection. These findings may have profound implications in human aging and diseases.


Assuntos
Complexo Shelterina , Telômero , Humanos , Telômero/genética , Envelhecimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa