RESUMO
Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ⼠-1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ⼠0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.
Assuntos
Solo , Tálio , Carvão Mineral , Monitoramento Ambiental , Centrais Elétricas , Poluentes do SoloRESUMO
This study of soil conditions was carried out on 30 meadow soil (podzol) samples from the vicinity of the soda ash heap in Jaworzno, supplemented by analyses of 18 samples of waste deposited on the heap. In all samples, the total content of macroelements (Ca and Na) and heavy metals (Cd, Cr, Ni, Pb and Zn) as well as pH were analysed. The element concentrations were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The materials examined were neutral to ultra-alkaline. Total accumulations (mg kg(-1)) of chemical elements in the soil vary from 130.24 to 14076.67 for Ca, 41.40-926.23 for Na, 0.03-3.34 for Cd, 0.94-103.62 for Cr, 0.94-35.89 for Ni, 3.51-76.47 for Pb and 12.05-279.13 for Zn, whereas quantities of the same elements in the waste samples vary from 171705.13 to 360487.94 for Ca, 517.64-3152.82 for Na, 0.2-9.89 for Cd, 1.16-20.40 for Cr, 1.08-9.79 for Ni, 0.1-146.05 for Pb and 10.26-552.35 for Zn. The vertical distribution of the metals was determined in each soil profile. Despite enrichment of heavy metals in the uppermost horizon on the top of the heap, the results lead to the conclusion that the relation of historical production of soda ash in Jaworzno to current contamination of the local soil environment is insignificant.
Assuntos
Monitoramento Ambiental , Poluentes do Solo/análise , Carbonatos , Poluição Ambiental/estatística & dados numéricos , Metais Pesados/análise , Polônia , Solo/químicaRESUMO
The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb-Zn-Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg(- 1), 20 g kg(- 1) and 200 mg kg(- 1) for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange capacity. The mobilization of Pb, Zn and Cd in soils depends on the persistence of the metal-containing particles in the atmosphere; the longer the time, the more abundant the stable forms. The dumped mining/smelting waste is less risk of easily mobilizable metal forms, however, downward metal migration especially due to the periodical leaching of the waste was observed.
Assuntos
Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Solo/química , Fracionamento Químico , Monitoramento Ambiental/métodos , PolôniaRESUMO
In this study, we report combined Tl isotopic and Tl mineralogical and speciation data from a set of Tl-rich sulfide concentrates and technological wastes from hydrometallurgical Zn extraction. We also present the first evaluation of Tl isotopic ratios over a cycle of sulfide processing, from the ore flotation to pyro- and hydrometallurgical stages. The results demonstrate that the prevailing Tl form in all samples is Tl(I), without any preferential incorporation into sulfides or Tl-containing secondary phases, indicating an absence of Tl redox reactions. Although the Tl concentrations varied significantly in the studied samples (~9-280 mg/kg), the overall Tl isotopic variability was small, in the range of -3.1 to -4.4 ± 0.7 (2σ) ε205Tl units. By combining present ε205Tl results with the trends first found for a local roasting plant, it is possible to infer minimum Tl isotopic effects throughout the studied industrial process. As a result, the use of Tl isotopic ratios as a source proxy may be complicated or even impossible in areas with naturally high/extreme Tl background contents. On the other hand, areas with two or more isotopically contrasting Tl sources allow for relatively easy tracing, i.e., in compartments which do not suffer from post-depositional isotopic redistributions.
Assuntos
Poluentes do Solo , Tálio , Monitoramento Ambiental , Isótopos/análise , Poluentes do Solo/análise , Sulfetos , Tálio/análiseRESUMO
Weathering of Tl-containing sulfides in a model (12-week) peat pot trial was studied to better understand their geochemical stability, dissolution kinetics, alteration products and the associated release and mobility of anthropogenic Tl in organic environments. We also present the effect of industrial acid rainwater on sulfide degradation and Tl migration in naturally acidic peat. Sphalerite (ZnS) was much less stable in peat than other Tl-containing sulfides (galena and pyrite), and thus acted as a major phase responsible for Tl mobilization. Furthermore, Tl incongruently leached out over Zn from ZnS, and accumulated considerably more in the peat solutions (≤5 µg Tl/L) and the peat samples (≤0.4 mg Tl/kg) that were subjected to acid rain watering compared to a deionized H2O regime. This finding was in good agreement with the absence of secondary Tl-containing phases, which could potentially control the Tl flux into the peat. The behavior of Tl was not as conservative as Pb throughout the trial, since a higher peat mobility and migration potential of Tl was observed compared to Pb. In conclusion, industrial acid precipitations can significantly affect the stability of ZnS even in acidic peat/organic environments, making it susceptible to enhanced weathering and Tl release in the long term.
Assuntos
Poluentes do Solo , Tálio , Monitoramento Ambiental , Chumbo , Solo , Poluentes do Solo/análise , Sulfetos , Tálio/análiseRESUMO
Vertical profiles of Tl, Pb and Zn concentrations and Tl and Pb isotopic ratios in a contaminated peatland/fen (Wolbrom, Poland) were studied to address questions regarding (i) potential long-term immobility of Tl in a peat profile, and (ii) a possible link in Tl isotopic signatures between a Tl source and a peat sample. Both prerequisites are required for using peatlands as archives of atmospheric Tl deposition and Tl isotopic ratios as a source proxy. We demonstrate that Tl is an immobile element in peat with a conservative pattern synonymous to that of Pb, and in contrast to Zn. However, the peat Tl record was more affected by geogenic source(s), as inferred from the calculated element enrichments. The finding further implies that Tl was largely absent from the pre-industrial emissions (>~250 years BP). The measured variations in Tl isotopic ratios in respective peat samples suggest a consistency with anthropogenic Tl (ε205Tl between ~ -3 and -4), as well as with background Tl isotopic values in the study area (ε205Tl between ~0 and -1), in line with detected 206Pb/207Pb ratios (1.16-1.19). Therefore, we propose that peatlands can be used for monitoring trends in Tl deposition and that Tl isotopic ratios can serve to distinguish its origin(s). However, given that the studied fen has a particularly complicated geochemistry (attributed to significant environmental changes in its history), it seems that ombrotrophic peatlands could be better suited for this type of Tl research.
Assuntos
Chumbo , Tálio , Monitoramento Ambiental , Mineração , Solo , Tálio/análiseRESUMO
Thallium (Tl) concentration and isotope data have been recorded for contaminated soils and a set of industrial wastes that were produced within different stages of Zn ore mining and metallurgical processing of Zn-rich materials. Despite large differences in Tl levels of the waste materials (1-500mgkg-1), generally small changes in ε205Tl values have been observed. However, isotopically lighter Tl was recorded in fly ash (ε205Tlâ¼-4.1) than in slag (ε205Tlâ¼-3.3), implying partial isotope fractionation during material processing. Thallium isotope compositions in the studied soils reflected the Tl contamination (ε205Tlâ¼-3.8), despite the fact that the major pollution period ended more than 30 years ago. Therefore, we assume that former industrial Tl inputs into soils, if significant, can potentially be traced using the isotope tracing method. We also suggest that the isotope redistributions occurred in some soil (subsurface) horizons, with Tl being isotopically heavier than the pollution source, due to specific sorption and/or precipitation processes, which complicates the discrimination of primary Tl. Thallium isotope analysis proved to be a promising tool to aid our understanding of Tl behavior within the smelting process, as well as its post-depositional dynamics in the environmental systems (soils).