Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 139(5): 748-760, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34587248

RESUMO

Acute lymphoblastic leukemia (ALL) harboring the IgH-CRLF2 rearrangement (IgH-CRLF2-r) exhibits poor clinical outcomes and is the most common subtype of Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL). While multiple chemotherapeutic regimens, including ruxolitinib monotherapy and/or its combination with chemotherapy, are being tested, their efficacy is reportedly limited. To identify molecules/pathways relevant for IgH-CRLF2-r ALL pathogenesis, we performed genome-wide CRISPR-Cas9 dropout screens in the presence or absence of ruxolitinib using 2 IgH-CRLF2-r ALL lines that differ in RAS mutational status. To do so, we employed a baboon envelope pseudotyped lentiviral vector system, which enabled, for the first time, highly efficient transduction of human B cells. While single-guide RNAs (sgRNAs) targeting CRLF2, IL7RA, or JAK1/2 significantly affected cell fitness in both lines, those targeting STAT5A, STAT5B, or STAT3 did not, suggesting that STAT signaling is largely dispensable for IgH-CRLF2-r ALL cell survival. We show that regulators of RAS signaling are critical for cell fitness and ruxolitinib sensitivity and that CRKL depletion enhances ruxolitinib sensitivity in RAS wild-type (WT) cells. Gilteritinib, a pan-tyrosine kinase inhibitor that blocks CRKL phosphorylation, effectively killed RAS WT IgH-CRLF2-r ALL cells in vitro and in vivo, either alone or combined with ruxolitinib. We further show that combining gilteritinib with trametinib, a MEK1/2 inhibitor, is an effective means to target IgH-CRLF2-r ALL cells regardless of RAS mutational status. Our study delineates molecules/pathways relevant for CRLF2-r ALL pathogenesis and could suggest rationally designed combination therapies appropriate for disease subtypes.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Rearranjo Gênico/efeitos dos fármacos , Humanos , Camundongos , Nitrilas/farmacologia , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Leukemia ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987275

RESUMO

Selinexor, a first-in-class exportin1 (XPO1) inhibitor, is an attractive anti-tumor agent because of its unique mechanisms of action; however, its dose-dependent toxicity and lack of biomarkers preclude its wide use in clinical applications. To identify key molecules/pathways regulating selinexor sensitivity, we performed genome-wide CRISPR/Cas9 dropout screens using two B-ALL lines. We identified, for the first time, that paralogous DDX19A and DDX19B RNA helicases modulate selinexor sensitivity by regulating MCL1 mRNA nuclear export. While single depletion of either DDX19A or DDX19B barely altered MCL1 protein levels, depletion of both significantly attenuated MCL1 mRNA nuclear export, reducing MCL1 protein levels. Importantly, combining selinexor treatment with depletion of either DDX19A or DDX19B markedly induced intrinsic apoptosis of leukemia cells, an effect rescued by MCL1 overexpression. Analysis of Depmap datasets indicated that a subset of T-ALL lines expresses minimal DDX19B mRNA levels. Moreover, we found that either selinexor treatment or DDX19A depletion effectively induced apoptosis of T-ALL lines expressing low DDX19B levels. We conclude that XPO1 and DDX19A/B coordinately regulate cellular MCL1 levels and propose that DDX19A/B could serve as biomarkers for selinexor treatment. Moreover, pharmacological targeting of DDX19 paralogs may represent a potential strategy to induce intrinsic apoptosis in leukemia cells.

3.
Leukemia ; 37(5): 1028-1038, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973350

RESUMO

To identify molecules/pathways governing Venetoclax (VEN) sensitivity, we performed genome-wide CRISPR/Cas9 screens using a mouse AML line insensitive to VEN-induced mitochondrial apoptosis. Levels of sgRNAs targeting March5, Ube2j2 or Ube2k significantly decreased upon VEN treatment, suggesting synthetic lethal interaction. Depletion of either Ube2j2 or Ube2k sensitized AML cells to VEN only in the presence of March5, suggesting coordinate function of the E2s Ube2j2 and Ube2k with the E3 ligase March5. We next performed CRISPR screens using March5 knockout cells and identified Noxa as a key March5 substrate. Mechanistically, Bax released from Bcl2 upon VEN treatment was entrapped by Mcl1 and Bcl-XL and failed to induce apoptosis in March5 intact AML cells. By contrast, in March5 knockout cells, liberated Bax did not bind to Mcl1, as Noxa likely occupied Mcl1 BH3-binding grooves and efficiently induced mitochondrial apoptosis. We reveal molecular mechanisms underlying AML cell-intrinsic VEN resistance and suggest a novel means to sensitize AML cells to VEN.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Proteína X Associada a bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Enzimas de Conjugação de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa