RESUMO
Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1-CSF1R-C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker.
Assuntos
Biomarcadores Tumorais/metabolismo , Heme Oxigenase-1/metabolismo , Neoplasias Pulmonares/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral/transplante , Quimioterapia Adjuvante/métodos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/imunologia , Feminino , Heme/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/sangue , Heme Oxigenase-1/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Masculino , Melanoma/mortalidade , Melanoma/secundário , Melanoma/terapia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/metabolismo , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão SinápticaRESUMO
According to current models, once the cell has reached terminal differentiation, the enhancer repertoire is completely established and maintained by cooperatively acting lineage-specific transcription factors (TFs). TFs activated by extracellular stimuli operate within this predetermined repertoire, landing close to where master regulators are constitutively bound. Here, we describe latent enhancers, defined as regions of the genome that in terminally differentiated cells are unbound by TFs and lack the histone marks characteristic of enhancers but acquire these features in response to stimulation. Macrophage stimulation caused sequential binding of stimulus-activated and lineage-determining TFs to these regions, enabling deposition of enhancer marks. Once unveiled, many of these enhancers did not return to a latent state when stimulation ceased; instead, they persisted and mediated a faster and stronger response upon restimulation. We suggest that stimulus-specific expansion of the cis-regulatory repertoire provides an epigenomic memory of the exposure to environmental agents.
Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Macrófagos/metabolismo , Animais , Diferenciação Celular , Epigenômica , Código das Histonas , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Enhancers and promoters that control the transcriptional output of terminally differentiated cells include cell type-specific and broadly active housekeeping elements. Whether the high constitutive activity of these two groups of cis-regulatory elements relies on entirely distinct or instead also on shared regulators is unknown. By dissecting the cis-regulatory repertoire of macrophages, we found that the ELF subfamily of ETS proteins selectively bound within 60 base pairs (bp) from the transcription start sites of highly active housekeeping genes. ELFs also bound constitutively active, but not poised, macrophage-specific enhancers and promoters. The role of ELFs in promoting high-level constitutive transcription was suggested by multiple evidence: ELF sites enabled robust transcriptional activation by endogenous and minimal synthetic promoters, ELF recruitment was stabilized by the transcriptional machinery, and ELF proteins mediated recruitment of transcriptional and chromatin regulators to core promoters. These data suggest that the co-optation of a limited number of highly active transcription factors represents a broadly adopted strategy to equip both cell type-specific and housekeeping cis-regulatory elements with the ability to efficiently promote transcription.
Assuntos
Regulação da Expressão Gênica/genética , Genes Essenciais/genética , Macrófagos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Fatores de Transcrição/genéticaRESUMO
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes common in persons aged ≥80 years, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 persons aged ≥80 years and investigated the relationships between CHIP and associated pathologies. Mutations were observed in one-third of persons aged ≥80 years and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, and ASXL1 with additional genetic lesions), and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1, or JAK2 were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was common in persons aged ≥80 years, with the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of subjects aged ≥80 years with cytopenia had presumptive evidence of myeloid neoplasm. In summary, specific mutational patterns define different risk of developing myeloid neoplasms vs inflammatory-associated diseases in persons aged ≥80 years. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.
Assuntos
Hematopoiese Clonal , Mutação , Fatores Etários , Idoso de 80 Anos ou mais , Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Doença das Coronárias/etiologia , Doença das Coronárias/genética , Feminino , Humanos , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Masculino , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/genéticaRESUMO
Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs.
Assuntos
Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Regiões Promotoras Genéticas/fisiologia , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , Terminação da Transcrição Genética/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/genética , RNA não Traduzido/genéticaRESUMO
The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8-PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF-AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome. While constitutively expressed IRF8-dependent genes contained only sites mediating basal IRF8/PU.1 recruitment, inducible IRF8-dependent genes contained variable combinations of constitutive and inducible sites. Overall, these data show at the genome scale how the same TF can be linked to constitutive and inducible gene regulation via distinct combinations of alternative DNA-binding sites.
Assuntos
Regulação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Macrófagos/metabolismo , Animais , Células Cultivadas , Fatores Reguladores de Interferon/genética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ligação ProteicaRESUMO
BACKGROUND & AIMS: The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). METHODS: We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. RESULTS: We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. CONCLUSIONS: We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. LAY SUMMARY: Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , RNA/metabolismo , Linfócitos T Reguladores , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Análise de Célula ÚnicaRESUMO
Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is currently unknown. We show here that an HDAC-myomiR-BAF60 variant network regulates the fate of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray, genome-wide chromatin remodeling by nuclease accessibility (NA) combined with next-generation sequencing (NA-seq), small RNA sequencing (RNA-seq), and microRNA (miR) high-throughput screening (HTS) against SWI/SNF BAF60 variants revealed that HDAC inhibitors (HDACis) derepress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease. Specifically, HDAC inhibition induces two core components of the myogenic transcriptional machinery, MYOD and BAF60C, and up-regulates the myogenic miRs (myomiRs) (miR-1.2, miR-133, and miR-206), which target the alternative BAF60 variants BAF60A and BAF60B, ultimately directing promyogenic differentiation while suppressing the fibro-adipogenic phenotype. In contrast, FAPs from late stage dystrophic muscles are resistant to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the promyogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bipotency by epigenetic intervention with HDACis provides a molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles.
Assuntos
Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Células-Tronco/metabolismo , Animais , Reprogramação Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Proteínas Musculares/metabolismoRESUMO
Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1-MLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7(-/-) macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response.
Assuntos
Glicosilfosfatidilinositóis/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Glicosilfosfatidilinositóis/biossíntese , Hexosiltransferases/biossíntese , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Receptores de Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/biossíntese , Proteína de Leucina Linfoide-Mieloide/genética , Transdução de SinaisRESUMO
Chronic inflammation promotes oncogenic transformation and tumor progression. Many inflammatory agents also generate a toxic microenvironment, implying that adaptive mechanisms must be deployed for cells to survive and undergo transformation in such unfavorable contexts. A paradigmatic case is represented by cancers occurring in pediatric patients with genetic defects of hepatocyte phosphatidylcholine transporters and in the corresponding mouse model (Mdr2-/- mice), in which impaired bile salt emulsification leads to chronic hepatocyte damage and inflammation, eventually resulting in oncogenic transformation. By combining genomics and metabolomics, we found that the transition from inflammation to cancer in Mdr2-/- mice was linked to the sustained transcriptional activation of metabolic detoxification systems and transporters by the Constitutive Androstane Receptor (CAR), a hepatocyte-specific nuclear receptor. Activation of CAR-dependent gene expression programs coincided with reduced content of toxic bile acids in cancer nodules relative to inflamed livers. Treatment of Mdr2-/- mice with a CAR inhibitor blocked cancer progression and caused a partial regression of existing tumors. These results indicate that the acquisition of resistance to endo- or xeno-biotic toxicity is critical for cancers that develop in toxic microenvironments.
Assuntos
Ácidos e Sais Biliares/metabolismo , Transformação Celular Neoplásica/genética , Inativação Metabólica/genética , Fígado/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Androstanóis/farmacologia , Animais , Transformação Celular Neoplásica/metabolismo , Receptor Constitutivo de Androstano , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Hepatite/genética , Hepatite/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/genética , Ativação Transcricional/efeitos dos fármacos , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
BACKGROUND: Inflammation is a key component of cardiac disease, with macrophages and T lymphocytes mediating essential roles in the progression to heart failure. Nonetheless, little insight exists on other immune subsets involved in the cardiotoxic response. METHODS: Here, we used single-cell RNA sequencing to map the cardiac immune composition in the standard murine nonischemic, pressure-overload heart failure model. By focusing our analysis on CD45+ cells, we obtained a higher resolution identification of the immune cell subsets in the heart, at early and late stages of disease and in controls. We then integrated our findings using multiparameter flow cytometry, immunohistochemistry, and tissue clarification immunofluorescence in mouse and human. RESULTS: We found that most major immune cell subpopulations, including macrophages, B cells, T cells and regulatory T cells, dendritic cells, Natural Killer cells, neutrophils, and mast cells are present in both healthy and diseased hearts. Most cell subsets are found within the myocardium, whereas mast cells are found also in the epicardium. Upon induction of pressure overload, immune activation occurs across the entire range of immune cell types. Activation led to upregulation of key subset-specific molecules, such as oncostatin M in proinflammatory macrophages and PD-1 in regulatory T cells, that may help explain clinical findings such as the refractivity of patients with heart failure to anti-tumor necrosis factor therapy and cardiac toxicity during anti-PD-1 cancer immunotherapy, respectively. CONCLUSIONS: Despite the absence of infectious agents or an autoimmune trigger, induction of disease leads to immune activation that involves far more cell types than previously thought, including neutrophils, B cells, Natural Killer cells, and mast cells. This opens up the field of cardioimmunology to further investigation by using toolkits that have already been developed to study the aforementioned immune subsets. The subset-specific molecules that mediate their activation may thus become useful targets for the diagnostics or therapy of heart failure.
Assuntos
Insuficiência Cardíaca/imunologia , Imunidade Celular/fisiologia , Miocárdio/imunologia , Análise de Célula Única/métodos , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo/métodos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Análise de Sequência de RNA/métodosRESUMO
Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-ß, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-ß activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents.
Assuntos
Regulação da Expressão Gênica/genética , Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Ciclo-Oxigenase 1/metabolismo , Citocinas/análise , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Genômica , Histona Desacetilases/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNARESUMO
Background Facioscapulohumeral muscular dystrophy (FSHD) is considered an autosomal dominant disease with a prevalence of 1 in 20â000. Almost all patients with FSHD carry deletions of integral copies of tandem 3.3 kb repeats (D4Z4) located on chromosome 4q35. However, FSHD families have been reported in which individuals carrying a D4Z4-reduced allele remain asymptomatic. Recently, it has been proposed that the D4Z4-reduced allele is pathogenic only in association with the permissive haplotype, 4APAS. Methods and results Through the Italian National Registry for FSHD (INRF), genotype-phenotype correlations were extensively studied in 11 non-consanguineous families in which two D4Z4-reduced alleles segregate. Overall, 68 subjects carrying D4Z4-reduced alleles were examined, including 15 compound heterozygotes. It was found that in four families the only FSHD-affected subject was the compound heterozygote for the D4Z4-reduced allele, and 52.6% of subjects carrying a single D4Z4-reduced 4A161PAS haplotype were non-penetrant carriers; moreover, the population frequency of the 4A161PAS haplotype associated with a D4Z4-reduced allele was found to be as high as 1.2%. Conclusions This study reveals a high frequency of compound heterozygotes in the Italian population and the presence of D4Z4-reduced alleles with the 4A161PAS pathogenic haplotype in the majority of non-penetrant subjects in FSHD families with compound heterozygosity. These data suggest that carriers of FSHD-sized alleles with 4A161PAS haplotype are more common in the general population than expected on the basis of FSHD prevalence. These findings challenge the notion that FSHD is a fully penetrant autosomal dominant disorder uniquely associated with the 4A161PAS haplotype, with relevant repercussions for genetic counselling and prenatal diagnosis.
Assuntos
Aconselhamento Genético , Heterozigoto , Distrofia Muscular Facioescapuloumeral/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Cromossomos Humanos Par 4 , Análise Mutacional de DNA , Feminino , Frequência do Gene , Estudos de Associação Genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Deleção de Sequência , Sequências de Repetição em Tandem , Adulto JovemRESUMO
Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell-derived IL-1ß enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes.
Assuntos
Lipídeos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Masculino , Redes e Vias Metabólicas , Camundongos , Neoplasias da Próstata/patologia , Análise de Célula ÚnicaRESUMO
PURPOSE: Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia-like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis.
Assuntos
Genômica/métodos , Síndromes Mielodisplásicas/classificação , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/genética , Prognóstico , Estudos RetrospectivosRESUMO
The AML1/ETO fusion protein found in acute myeloid leukemias functions as a transcriptional regulator by recruiting co-repressor complexes to its DNA binding site. In order to extend the understanding of its role in preleukemia, we expressed AML1/ETO in a murine immortalized pluripotent hematopoietic stem/progenitor cell line, EML C1, and found that genes involved in functions such as cell-to-cell adhesion and cell motility were among the most significantly regulated as determined by RNA sequencing. In functional assays, AML1/ETO-expressing cells showed a decrease in adhesion to stromal cells, an increase of cell migration rate in vitro, and displayed an impairment in homing and engraftment in vivo upon transplantation into recipient mice. Our results suggest that AML1/ETO expression determines a more mobile and less adherent phenotype in preleukemic cells, therefore altering the interaction with the hematopoietic niche, potentially leading to the migration across the bone marrow barrier and to disease progression.
Assuntos
Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Neoplásicas/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/fisiologia , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia , Microambiente Tumoral/genéticaRESUMO
Inflammation is part of a complex physiological response to harmful stimuli and pathogenic stress. The five components of the Nuclear Factor κB (NF-κB) family are prominent mediators of inflammation, acting as key transcriptional regulators of hundreds of genes. Several signaling pathways activated by diverse stimuli converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. It is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. Scope of the present analysis is to provide a wider, systemic picture of the NF-κB signaling system. Data from different sources such as literature, functional enrichment web resources, protein-protein interaction and pathway databases have been gathered, curated, integrated and analyzed in order to reconstruct a single, comprehensive picture of the proteins that interact with, and participate to the NF-κB activation system. Such a reconstruction shows that the NF-κB interactome is substantially different in quantity and quality of components with respect to canonical representations. The analysis highlights that several neglected but topologically central proteins may play a role in the activation of NF-κB mediated responses. Moreover the interactome structure fits with the characteristics of a bow tie architecture. This interactome is intended as an open network resource available for further development, refinement and analysis.
Assuntos
NF-kappa B/metabolismo , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais , Humanos , Anotação de Sequência MolecularRESUMO
BACKGROUND: High-throughput sequencing is generating massive amounts of data at a pace that largely exceeds the throughput of data analysis routines. Here we introduce Fish the ChIPs (FC), a computational pipeline aimed at a broad public of users and designed to perform complete ChIP-Seq data analysis of an unlimited number of samples, thus increasing throughput, reproducibility and saving time. RESULTS: Starting from short read sequences, FC performs the following steps: 1) quality controls, 2) alignment to a reference genome, 3) peak calling, 4) genomic annotation, 5) generation of raw signal tracks for visualization on the UCSC and IGV genome browsers. FC exploits some of the fastest and most effective tools today available. Installation on a Mac platform requires very basic computational skills while configuration and usage are supported by a user-friendly graphic user interface. Alternatively, FC can be compiled from the source code on any Unix machine and then run with the possibility of customizing each single parameter through a simple configuration text file that can be generated using a dedicated user-friendly web-form. Considering the execution time, FC can be run on a desktop machine, even though the use of a computer cluster is recommended for analyses of large batches of data. FC is perfectly suited to work with data coming from Illumina Solexa Genome Analyzers or ABI SOLiD and its usage can potentially be extended to any sequencing platform. CONCLUSIONS: Compared to existing tools, FC has two main advantages that make it suitable for a broad range of users. First of all, it can be installed and run by wet biologists on a Mac machine. Besides it can handle an unlimited number of samples, being convenient for large analyses. In this context, computational biologists can increase reproducibility of their ChIP-Seq data analyses while saving time for downstream analyses.
Assuntos
Imunoprecipitação da Cromatina/métodos , Biologia Computacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Biologia Computacional/instrumentação , Gráficos por Computador , Bases de Dados Genéticas , Genoma , Internet , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Reprodutibilidade dos Testes , Alinhamento de Sequência , Fatores de TempoRESUMO
Omics data and computational approaches are today providing a key to disentangle the complex architecture of living systems. The integration and analysis of data of different nature allows to extract meaningful representations of signaling pathways and protein interactions networks, helpful in achieving an increased understanding of such intricate biochemical processes. We here describe a general workflow and relative hurdles in integrating online Omics data and analyzing reconstructed representations by using the available computational platforms.