Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Arch Toxicol ; 98(3): 943-956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285066

RESUMO

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.


Assuntos
Inibidores da Angiogênese , Peixe-Zebra , Animais , Humanos , Inibidores da Angiogênese/toxicidade , Inibidores da Angiogênese/metabolismo , Angiogênese , Metotrexato/toxicidade , Rotenona/farmacologia , Embrião não Mamífero , Metabolômica
2.
Chem Res Toxicol ; 36(4): 598-616, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36972423

RESUMO

The diversity of microbial species in the gut has a strong influence on health and development of the host. Further, there are indications that the variation in expression of gut bacterial metabolic enzymes is less diverse than the taxonomic profile, underlying the importance of microbiome functionality, particularly from a toxicological perspective. To address these relationships, the gut bacterial composition of Wistar rats was altered by a 28 day oral treatment with the antibiotics tobramycin or colistin sulfate. On the basis of 16S marker gene sequencing data, tobramycin was found to cause a strong reduction in the diversity and relative abundance of the microbiome, whereas colistin sulfate had only a marginal impact. Associated plasma and fecal metabolomes were characterized by targeted mass spectrometry-based profiling. The fecal metabolome of tobramycin-treated animals had a high number of significant alterations in metabolite levels compared to controls, particularly in amino acids, lipids, bile acids (BAs), carbohydrates, and energy metabolites. The accumulation of primary BAs and significant reduction of secondary BAs in the feces indicated that the microbial alterations induced by tobramycin inhibit bacterial deconjugation reactions. The plasma metabolome showed less, but still many alterations in the same metabolite groups, including reductions in indole derivatives and hippuric acid, and furthermore, despite marginal effects of colistin sulfate treatment, there were nonetheless systemic alterations also in BAs. Aside from these treatment-based differences, we also uncovered interindividual differences particularly centering on the loss of Verrucomicrobiaceae in the microbiome, but with no apparent associated metabolite alterations. Finally, by comparing the data set from this study with metabolome alterations in the MetaMapTox database, key metabolite alterations were identified as plasma biomarkers indicative of altered gut microbiomes resulting from a wide activity spectrum of antibiotics.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Ratos , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Colistina/análise , Tobramicina/farmacologia , Tobramicina/análise , Ácidos e Sais Biliares/análise , Ratos Wistar , Metaboloma , Fezes/química , RNA Ribossômico 16S/genética
3.
Cell Biol Toxicol ; 39(6): 2899-2917, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37138123

RESUMO

Cell-based metabolomics provides multiparametric physiologically relevant readouts that can be highly advantageous for improved, biologically based decision making in early stages of compound development. Here, we present the development of a 96-well plate LC-MS/MS-based targeted metabolomics screening platform for the classification of liver toxicity modes of action (MoAs) in HepG2 cells. Different parameters of the workflow (cell seeding density, passage number, cytotoxicity testing, sample preparation, metabolite extraction, analytical method, and data processing) were optimized and standardized to increase the efficiency of the testing platform. The applicability of the system was tested with seven substances known to be representative of three different liver toxicity MoAs (peroxisome proliferation, liver enzyme induction, and liver enzyme inhibition). Five concentrations per substance, aimed at covering the complete dose-response curve, were analyzed and 221 uniquely identified metabolites were measured, annotated, and allocated in 12 different metabolite classes such as amino acids, carbohydrates, energy metabolism, nucleobases, vitamins and cofactors, and diverse lipid classes. Multivariate and univariate analyses showed a dose response of the metabolic effects, a clear differentiation between liver toxicity MoAs and resulted in the identification of metabolite patterns specific for each MoA. Key metabolites indicative of both general and mechanistic specific hepatotoxicity were identified. The method presented here offers a multiparametric, mechanistic-based, and cost-effective hepatotoxicity screening that provides MoA classification and sheds light into the pathways involved in the toxicological mechanism. This assay can be implemented as a reliable compound screening platform for improved safety assessment in early compound development pipelines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Metabolômica/métodos
4.
Arch Toxicol ; 97(11): 2903-2917, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37665362

RESUMO

Omics techniques have been increasingly recognized as promising tools for Next Generation Risk Assessment. Targeted metabolomics offer the advantage of providing readily interpretable mechanistic information about perturbed biological pathways. In this study, a high-throughput LC-MS/MS-based broad targeted metabolomics system was applied to study nitrofurantoin metabolic dynamics over time and concentration and to provide a mechanistic-anchored approach for point of departure (PoD) derivation. Upon nitrofurantoin exposure at five concentrations (7.5 µM, 15 µM, 20 µM, 30 µM and 120 µM) and four time points (3, 6, 24 and 48 h), the intracellular metabolome of HepG2 cells was evaluated. In total, 256 uniquely identified metabolites were measured, annotated, and allocated in 13 different metabolite classes. Principal component analysis (PCA) and univariate statistical analysis showed clear metabolome-based time and concentration effects. Mechanistic information evidenced the differential activation of cellular pathways indicative of early adaptive and hepatotoxic response. At low concentrations, effects were seen mainly in the energy and lipid metabolism, in the mid concentration range, the activation of the antioxidant cellular response was evidenced by increased levels of glutathione (GSH) and metabolites from the de novo GSH synthesis pathway. At the highest concentrations, the depletion of GSH, together with alternations reflective of mitochondrial impairments, were indicative of a hepatotoxic response. Finally, a metabolomics-based PoD was derived by multivariate PCA using the whole set of measured metabolites. This approach allows using the entire dataset and derive PoD that can be mechanistically anchored to established key events. Our results show the suitability of high throughput targeted metabolomics to investigate mechanisms of hepatoxicity and derive point of departures that can be linked to existing adverse outcome pathways and contribute to the development of new ones.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nitrofurantoína , Humanos , Nitrofurantoína/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica , Glutationa , Doença Hepática Induzida por Substâncias e Drogas/etiologia
5.
Clin Chem ; 63(1): 267-277, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28062623

RESUMO

OBJECTIVES: In this study we aimed to identify novel metabolomic biomarkers suitable for improved diagnosis of heart failure with reduced ejection fraction (HFrEF). METHODS: We prospectively recruited 887 individuals consisting of HFrEF patients with either ischemic (ICMP, n = 257) or nonischemic cardiomyopathy (NICMP, n = 269), healthy controls (n = 327), and patients with pulmonary diseases (n = 34). A single-center identification (n = 238) was followed by a multicenter confirmation study (n = 649). Plasma samples from the single-center study were subjected to metabolite profiling analysis to identify metabolomic features with potential as HFrEF biomarkers. A dedicated analytical protocol was developed for the routine analysis of selected metabolic features in the multicenter cohort. RESULTS: In the single-center study, 92 of 181 metabolomic features with known chemical identity (51%) were significantly changed in HFrEF patients compared to healthy controls (P <0.05). Three specific metabolomic features belonging to the lipid classes of sphingomyelins, triglycerides, and phosphatidylcholines were selected as the cardiac lipid panel (CLP) and analyzed in the multicenter study using the dedicated analytical protocol. The combination of the CLP with N-terminal pro-B-type natriuretic peptide (NT-proBNP) distinguished HFrEF patients from healthy controls with an area under the curve (AUC) of 0.97 (sensitivity 80.2%, specificity 97.6%) and was significantly superior compared to NT-proBNP alone (AUC = 0.93, sensitivity 81.7%, specificity 88.1%, P <0.001), even in the subgroups with mildly reduced left ventricular EF (0.94 vs 0.87; P <0.001) and asymptomatic patients (0.95 vs 0.91; P <0.05). CONCLUSIONS: The new metabolomic biomarker panel has the potential to improve HFrEF detection, even in mild and asymptomatic stages. The observed changes further indicate lipid alterations in the setting of HFrEF.


Assuntos
Biomarcadores/sangue , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Idoso , Biomarcadores/metabolismo , Feminino , Insuficiência Cardíaca/sangue , Humanos , Lipídeos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
6.
J Biol Chem ; 288(16): 11520-30, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23449981

RESUMO

Sphingomyelin (SM) is a vital component of mammalian membranes, providing mechanical stability and a structural framework for plasma membrane organization. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase in the Golgi lumen. Drosophila lacks SM and instead synthesizes the SM analogue ceramide phosphoethanolamine (CPE) as the principal membrane sphingolipid. The corresponding CPE synthase shares mechanistic features with enzymes mediating phospholipid biosynthesis via the Kennedy pathway. Using a functional cloning strategy, we here identified a CDP-ethanolamine:ceramide ethanolamine phosphotransferase as the enzyme responsible for CPE production in Drosophila. CPE synthase constitutes a new branch within the CDP-alcohol phosphotransferase superfamily with homologues in Arthropoda (insects, spiders, mites, scorpions), Cnidaria (Hydra, sea anemones), and Mollusca (oysters) but not in most other animal phyla. The enzyme resides in the Golgi complex with its active site facing the lumen, contrary to the membrane topology of other CDP-alcohol phosphotransferases. Our findings open up an important new avenue to address the biological role of CPE, an enigmatic membrane constituent of a wide variety of invertebrate and marine organisms.


Assuntos
Proteínas de Drosophila/metabolismo , Etanolaminofosfotransferase/metabolismo , Complexo de Golgi/enzimologia , Esfingomielinas/biossíntese , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Etanolaminofosfotransferase/genética , Complexo de Golgi/genética , Hydra/enzimologia , Hydra/genética , Anêmonas-do-Mar/enzimologia , Anêmonas-do-Mar/genética , Esfingomielinas/genética
7.
Microorganisms ; 12(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792850

RESUMO

The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle grade. Volunteers' metadata were collected through questionnaires and non-invasive biophysical measurements. A simple model and a biological statistical model were used to show the difference in skin microbiota composition between the two age groups. Taxonomic and non-metric multidimensional scaling analysis showed that the skin microbiome was more diverse in the older group (≥55 yo). There was also a significant decrease in Actinobacteria, namely in Cutibacterium acnes, and an increase in Corynebacterium kroppenstedtii. Some Streptococcus and Staphylococcus species belonging to the Firmicutes phylum and species belonging to the Proteobacteria phylum increased. In the 18-35 yo younger group, the microbiome was characterized by a significantly higher proportion of Cutibacterium acnes and Lactobacillus, most strikingly, Lactobacillus crispatus. The functional analysis using GO terms revealed that the young group has a higher significant expression of genes involved in biological and metabolic processes and in innate skin microbiome protection. The better comprehension of age-related impacts observed will later support the investigation of skin microbiome implications in antiaging protection.

8.
mSystems ; 9(2): e0035623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206014

RESUMO

Although metabolomics data acquisition and analysis technologies have become increasingly sophisticated over the past 5-10 years, deciphering a metabolite's function from a description of its structure and its abundance in a given experimental setting is still a major scientific and intellectual challenge. To point out ways to address this "data to knowledge" challenge, we developed a functional metabolomics strategy that combines state-of-the-art data analysis tools and applied it to a human scalp metabolomics data set: skin swabs from healthy volunteers with normal or oily scalp (Sebumeter score 60-120, n = 33; Sebumeter score > 120, n = 41) were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), yielding four metabolomics data sets for reversed phase chromatography (C18) or hydrophilic interaction chromatography (HILIC) separation in electrospray ionization (ESI) + or - ionization mode. Following our data analysis strategy, we were able to obtain increasingly comprehensive structural and functional annotations, by applying the Global Natural Product Social Networking (M. Wang, J. J. Carver, V. V. Phelan, L. M. Sanchez, et al., Nat Biotechnol 34:828-837, 2016, https://doi.org/10.1038/nbt.3597), SIRIUS (K. Dührkop, M. Fleischauer, M. Ludwig, A. A. Aksenov, et al., Nat Methods 16:299-302, 2019, https://doi.org/10.1038/s41592-019-0344-8), and MicrobeMASST (S. ZuffaS, R. Schmid, A. Bauermeister, P. W, P. Gomes, et al., bioRxiv:rs.3.rs-3189768, 2023, https://doi.org/10.21203/rs.3.rs-3189768/v1) tools. We finally combined the metabolomics data with a corresponding metagenomic sequencing data set using MMvec (J. T. Morton, A. A. Aksenov, L. F. Nothias, J. R. Foulds, et. al., Nat Methods 16:1306-1314, 2019, https://doi.org/10.1038/s41592-019-0616-3), gaining insights into the metabolic niche of one of the most prominent microbes on the human skin, Staphylococcus epidermidis.IMPORTANCESystems biology research on host-associated microbiota focuses on two fundamental questions: which microbes are present and how do they interact with each other, their host, and the broader host environment? Metagenomics provides us with a direct answer to the first part of the question: it unveils the microbial inhabitants, e.g., on our skin, and can provide insight into their functional potential. Yet, it falls short in revealing their active role. Metabolomics shows us the chemical composition of the environment in which microbes thrive and the transformation products they produce. In particular, untargeted metabolomics has the potential to observe a diverse set of metabolites and is thus an ideal complement to metagenomics. However, this potential often remains underexplored due to the low annotation rates in MS-based metabolomics and the necessity for multiple experimental chromatographic and mass spectrometric conditions. Beyond detection, prospecting metabolites' functional role in the host/microbiome metabolome requires identifying the biological processes and entities involved in their production and biotransformations. In the present study of the human scalp, we developed a strategy to achieve comprehensive structural and functional annotation of the metabolites in the human scalp environment, thus diving one step deeper into the interpretation of "omics" data. Leveraging a collection of openly accessible software tools and integrating microbiome data as a source of functional metabolite annotations, we finally identified the specific metabolic niche of Staphylococcus epidermidis, one of the key players of the human skin microbiome.


Assuntos
Couro Cabeludo , Staphylococcus epidermidis , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos
9.
Microorganisms ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838498

RESUMO

An understanding of the changes in gut microbiome composition and its associated metabolic functions is important to assess the potential implications thereof on host health. Thus, to elucidate the connection between the gut microbiome and the fecal and plasma metabolomes, two poorly bioavailable carbapenem antibiotics (doripenem and meropenem), were administered in a 28-day oral study to male and female Wistar rats. Additionally, the recovery of the gut microbiome and metabolomes in doripenem-exposed rats were studied one and two weeks after antibiotic treatment (i.e., doripenem-recovery groups). The 16S bacterial community analysis revealed an altered microbial population in all antibiotic treatments and a recovery of bacterial diversity in the doripenem-recovery groups. A similar pattern was observed in the fecal metabolomes of treated animals. In the recovery group, particularly after one week, an over-compensation was observed in fecal metabolites, as they were significantly changed in the opposite direction compared to previously changed metabolites upon 28 days of antibiotic exposure. Key plasma metabolites known to be diagnostic of antibiotic-induced microbial shifts, including indole derivatives, hippuric acid, and bile acids were also affected by the two carbapenems. Moreover, a unique increase in the levels of indole-3-acetic acid in plasma following meropenem treatment was observed. As was observed for the fecal metabolome, an overcompensation of plasma metabolites was observed in the recovery group. The data from this study provides insights into the connectivity of the microbiome and fecal and plasma metabolomes and demonstrates restoration post-antibiotic treatment not only for the microbiome but also for the metabolomes. The importance of overcompensation reactions for health needs further studies.

10.
J Biol Chem ; 286(13): 11401-14, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21303904

RESUMO

Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.


Assuntos
Proteínas Fúngicas/metabolismo , Genes Fúngicos/fisiologia , Oxirredutases/metabolismo , Pichia/metabolismo , Esfingolipídeos/biossíntese , Proteínas Fúngicas/genética , Oxirredutases/genética , Pichia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Esfingolipídeos/genética
11.
New Phytol ; 196(4): 1086-1097, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025549

RESUMO

In Arabidopsis, the fatty acid moiety of sphingolipids is mainly α-hydroxylated. The consequences of a reduction in this modification were analysed. Mutants of both Fatty Acid Hydroxylase genes (AtFAH1 and AtFAH2) were analysed for sphingolipid profiles. To elucidate further consequences of the mutations, metabolic analyses were performed and the influence on pathogen defence was determined. Ceramide and glucosylceramide profiles of double-mutant plants showed a reduction in sphingolipids with α-hydroxylated fatty acid moieties, and an accumulation of sphingolipids without these moieties. In addition, the free trihydroxylated long-chain bases and ceramides were increased by five- and ten-fold, respectively, whereas the amount of glucosylceramides was decreased by 25%. Metabolite analysis of the double mutant revealed salicylates as enriched metabolites. Infection experiments supported the metabolic changes, as the double mutant showed an enhanced disease-resistant phenotype for infection with the obligate biotrophic pathogen Golovinomyces cichoracearum. In summary, these results suggest that fatty acid hydroxylation of ceramides is important for the biosynthesis of complex sphingolipids. Its absence leads to the accumulation of long-chain bases and ceramides as their precursors. This increases salicylate levels and resistance towards obligate biotrophic fungal pathogens, confirming a role of sphingolipids in salicylic acid-dependent defence reactions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ceramidas/metabolismo , Oxigenases de Função Mista/genética , Esfingolipídeos/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/patogenicidade , Regulação da Expressão Gênica de Plantas , Hidroxilação , Oxigenases de Função Mista/metabolismo , Mutação , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Esfingolipídeos/metabolismo , Verticillium/patogenicidade
12.
New Phytol ; 192(4): 841-854, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883234

RESUMO

The bioactive lipid ceramide is produced by the enzyme ceramide synthase, which exists in several isoforms in most eukaryotic organisms. Here, we investigated functional differences between the three ceramide synthase isoforms in Arabidopsis thaliana. The biochemical properties of the three ceramide synthases were investigated by comparing lipid profiles of yeast strains expressing LOH1, LOH2 or LOH3 with those of wild-type and loh1, loh2 and loh3 knockout plants. Expression profiles of the ceramide synthases and of the pathogenesis-related gene PR-1 were investigated by real-time PCR. Each ceramide synthase isoform showed a characteristic preference regarding acyl-CoA chain length as well as sphingoid base hydroxylation, which matches the pattern of ceramide and glucosylceramide species found in leaves. After extended culture under short-day conditions, loh1 plants showed spontaneous cell death accompanied by enhanced expression of PR-1. The levels of free trihydroxy sphingoid bases as well as ceramide and glucosylceramide species with C(16) fatty acid were significantly elevated while species with C(20) -C(28) fatty acids were reduced. These data suggest that spontaneous cell death in the loh1 line is triggered either by the accumulation of free trihydroxy sphingoid bases or ceramide species with C(16) fatty acid.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular , DNA Bacteriano/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Glucosilceramidas/metabolismo , Hidroxilação , Mutagênese Insercional/genética , Oxirredutases/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingosina/metabolismo , Fatores de Tempo
13.
Adv Exp Med Biol ; 688: 249-63, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20919660

RESUMO

Our knowledge of plant sphingolipid metabolism and function has significantly increased over the past years. This applies mainly to the identification and the functional characterization of genes and enzymes involved in sphingolipid biosynthesis. In addition a number of plant mutants have provided new insights into sphingolipid functions. Very little is still known about intracellular transport, spatial distribution, degradation and signaling functions of sphingolipids. However, combination of Arabidopsis genetics with lipidomics and cell biology will soon bring our understanding of these issues to a new level.


Assuntos
Plantas/metabolismo , Esfingolipídeos/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Modelos Biológicos , Estrutura Molecular , Plantas/genética , Transdução de Sinais/fisiologia , Esfingolipídeos/química
14.
Metabolites ; 10(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545183

RESUMO

Various environmental factors can alter the gut microbiome's composition and functionality, and modulate host health. In this study, the effects of oral and parenteral administration of two poorly bioavailable antibiotics (i.e., vancomycin and streptomycin) on male Wistar Crl/Wi(Han) rats for 28 days were compared to distinguish between microbiome-derived or -associated and systemic changes in the plasma metabolome. The resulting changes in the plasma metabolome were compared to the effects of a third reference compound, roxithromycin, which is readily bioavailable. A community analysis revealed that the oral administration of vancomycin and roxithromycin in particular leads to an altered microbial population. Antibiotic-induced changes depending on the administration routes were observed in plasma metabolite levels. Indole-3-acetic acid (IAA) and hippuric acid (HA) were identified as key metabolites of microbiome modulation, with HA being the most sensitive. Even though large variations in the plasma bile acid pool between and within rats were observed, the change in microbiome community was observed to alter the composition of the bile acid pool, especially by an accumulation of taurine-conjugated primary bile acids. In-depth investigation of the relationship between microbiome variability and their functionality, with emphasis on the bile acid pool, will be necessary to better assess the potential adverseness of environmentally induced microbiome changes.

15.
J Lipid Res ; 50(11): 2270-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19454763

RESUMO

Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Ceramidas/metabolismo , Cromatografia Líquida , Cromatografia em Camada Fina , Etanolaminas , Células HeLa , Humanos , Espectrometria de Massas , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/classificação , Transferases (Outros Grupos de Fosfato Substituídos)/genética
16.
Food Funct ; 10(9): 6030-6041, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483433

RESUMO

Dietary bioactive peptides have been, among many functionalities, associated with immune modulation and thereby may improve resolution of inflammation. The goals of this research were to assess (1) whether specific peptides with immune-modulating activity consumed as part of a rice protein hydrolysate could be absorbed into blood and (2) whether they modulate inflammation markers. Artificial intelligence algorithms were applied to target, predict and unlock inflammation-modulating peptides from rice protein. A food application was developed containing four bioactive peptides. Protein docking simulation studies revealed high binding energies of these peptides with inflammation markers. In a small kinetic study 10 healthy subjects consumed the peptides with a single bolus of 20 g protein hydrolysate. Although absorption of the four predicted peptides at plasma concentrations deemed biologically relevant could not be confirmed (quantitative LC-MS/MS), several cytokines responded (ELISA kits). The 24-hour kinetic study revealed a slight suppression of pro-inflammatory TNF-α, IP-10 and NOx, whereas IL-6 increased temporarily (timepoints 2-12 hours). These markers returned to the baseline after 24 hours whereas others were not affected significantly (IL-10, hs-CRP, IL-8, and MCP-1). Consumption of a single dose protein hydrolysate containing immune modulatory peptides induced a mild temporary response most likely through intestinal signaling. Forthcoming studies will examine dietary supplementation in situations of stress.


Assuntos
Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Inflamação/tratamento farmacológico , Oryza/química , Peptídeos/administração & dosagem , Peptídeos/química , Adolescente , Adulto , Algoritmos , Inteligência Artificial , Biomarcadores/sangue , Cromatografia Líquida , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Interleucina-10/sangue , Interleucina-10/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Hidrolisados de Proteína/administração & dosagem , Hidrolisados de Proteína/química , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem
17.
Cardiovasc Res ; 115(8): 1296-1305, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418544

RESUMO

AIMS: Heart failure is characterized by structural and metabolic cardiac remodelling. The aim of the present study is to expand our understanding of the complex metabolic alterations in the transition from pathological hypertrophy to heart failure and exploit the results from a translational perspective. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) or sham surgery and sacrificed 2 weeks, 4 weeks, or 6 weeks after the procedure. Samples from plasma, liver, skeletal muscle, and heart were collected and analysed using metabolomics. Cardiac samples were also analysed by transcriptional profiling. Progressive alterations of key cardiac metabolic pathways and gene expression patterns indicated impaired mitochondrial function and a metabolic switch during transition to heart failure. Similar to the heart, liver, and skeletal muscle revealed significant metabolic alterations such as depletion of essential fatty acids and glycerolipids in late stages of heart failure. Circulating metabolites, particularly fatty acids, reflected cardiac metabolic defects, and deteriorating heart function. For example, inverse correlation was found between plasma and the heart levels of triacylglycerol (C18:1, C18:2, C18:3), and sphingomyelin (d18:1, C23:0) already at an early stage of heart failure. Interestingly, combining metabolic and transcriptional data from cardiac tissue revealed that decreased carnitine shuttling and transportation preceded mitochondrial dysfunction. We, thus, studied the therapeutic potential of OCTN2 (Organic Cation/Carnitine Transporter 2), an important factor for carnitine transportation. Cardiac overexpression of OCTN2 using an adeno-associated viral vector significantly improved ejection fraction and reduced interstitial fibrosis in mice subjected to TAC. CONCLUSION: Comprehensive plasma and tissue profiling reveals systemic metabolic alterations in heart failure, which can be used for identification of novel biomarkers and potential therapeutic targets.


Assuntos
Cardiomegalia/sangue , Metabolismo Energético , Insuficiência Cardíaca/sangue , Fígado/metabolismo , Metabolômica , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Remodelação Ventricular , Animais , Biomarcadores/sangue , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Fatores de Tempo
18.
J Cell Biol ; 185(6): 1013-27, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19506037

RESUMO

Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Filogenia , Interferência de RNA , Via Secretória/fisiologia , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/classificação , Transferases (Outros Grupos de Fosfato Substituídos)/genética
19.
J Biol Chem ; 282(37): 26666-26674, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17636265

RESUMO

Fatty acid desaturases catalyze the introduction of double bonds at specific positions of an acyl chain and are categorized according to their substrate specificity and regioselectivity. The current understanding of membrane-bound desaturases is based on mutant studies, biochemical topology analysis, and the comparison of related enzymes with divergent functionality. Because structural information is lacking, the principles of membrane-bound desaturase specificity are still not understood despite of substantial research efforts. Here we compare two membrane-bound fatty acid desaturases from Aspergillus nidulans: a strictly monofunctional oleoyl-Delta12 desaturase and a processive bifunctional oleoyl-Delta12/linoleoyl-omega3 desaturase. The high similarities in the primary sequences of the enzymes provide an ideal starting point for the systematic analysis of factors determining substrate specificity and bifunctionality. Based on the most current topology models, both desaturases were divided into nine domains, and the domains of the monofunctional Delta12 desaturase were systematically exchanged for their respective corresponding matches of the bifunctional sister enzyme. Catalytic capacities of hybrid enzymes were tested by heterologous expression in yeast, followed by biochemical characterization of the resulting fatty acid patterns. The individual exchange of two domains of a length of 18 or 49 amino acids each resulted in bifunctional Delta12/omega3 activity of the previously monofunctional parental enzyme. Sufficient determinants of fatty acid desaturase substrate specificity and bifunctionality could, thus, be narrowed down to a membrane-peripheral region close to the catalytic site defined by conserved histidine-rich motifs in the topology model.


Assuntos
Aspergillus nidulans/enzimologia , Ácidos Graxos Dessaturases/química , Sequência de Bases , Sítios de Ligação , Membrana Celular/enzimologia , Ácidos Graxos Dessaturases/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Especificidade por Substrato
20.
J Biol Chem ; 281(9): 5582-92, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16339149

RESUMO

Fungal glucosylceramides play an important role in plant-pathogen interactions enabling plants to recognize the fungal attack and initiate specific defense responses. A prime structural feature distinguishing fungal glucosylceramides from those of plants and animals is a methyl group at the C9-position of the sphingoid base, the biosynthesis of which has never been investigated. Using information on the presence or absence of C9-methylated glucosylceramides in different fungal species, we developed a bioinformatics strategy to identify the gene responsible for the biosynthesis of this C9-methyl group. This phylogenetic profiling allowed the selection of a single candidate out of 24-71 methyltransferase sequences present in each of the fungal species with C9-methylated glucosylceramides. A Pichia pastoris knock-out strain lacking the candidate sphingolipid C9-methyltransferase was generated, and indeed, this strain contained only non-methylated glucosylceramides. In a complementary approach, a Saccharomyces cerevisiae strain was engineered to produce glucosylceramides suitable as a substrate for C9-methylation. C9-methylated sphingolipids were detected in this strain expressing the candidate from P. pastoris, demonstrating its function as a sphingolipid C9-methyltransferase. The enzyme belongs to the superfamily of S-adenosylmethionine-(SAM)-dependent methyltransferases and shows highest sequence similarity to plant and bacterial cyclopropane fatty acid synthases. An in vitro assay showed that sphingolipid C9-methylation is membrane-bound and requires SAM and Delta4,8-desaturated ceramide as substrates.


Assuntos
Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Glucosilceramidas , Metiltransferases/classificação , Metiltransferases/metabolismo , Esfingolipídeos , Sequência de Aminoácidos , Animais , Biologia Computacional , Proteínas Fúngicas/genética , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Metiltransferases/genética , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Pichia/enzimologia , Pichia/genética , Alinhamento de Sequência , Esfingolipídeos/química , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa