Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361692

RESUMO

A new benzodithiophene and benzotriazole-based terpolymer bearing a fluorescein derivative as a side group was synthesized and studied for organic solar cell (OSC) applications. This side group was covalently bounded to the backbone through an n-hexyl chain to induce the intramolecular Förster Resonance Energy Transfer (FRET) process and thus improve the photovoltaic performance of the polymeric material. The polymer exhibited good solubility in common organic chlorinated solvents as well as thermal stability (TDT10% > 360 °C). Photophysical measurements demonstrated the occurrence of the FRET phenomenon between the lateral group and the terpolymer. The terpolymer exhibited an absorption band centered at 501 nm, an optical bandgap of 2.02 eV, and HOMO and LUMO energy levels of −5.30 eV and −3.28 eV, respectively. A preliminary study on terpolymer-based OSC devices showed a low power-conversion efficiency (PCE) but a higher performance than devices based on an analogous polymer without the fluorescein derivative. These results mean that the design presented here is a promising strategy to improve the performance of polymers used in OSCs.


Assuntos
Energia Solar , Transferência Ressonante de Energia de Fluorescência , Tiofenos , Fluoresceína , Polímeros
2.
Molecules ; 23(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115838

RESUMO

Herein we report an expeditive C-3 vinylation of unprotected 3-iodoindazoles under microwave irradiation. Ten C-5 substituted 3-vinylindazole derivatives, nine of them novel, were synthesized through this method, which proceeds in moderate to excellent yields starting from C-5 substituted 3-iodoindazole derivatives. In all cases, the C-3 vinylated derivative was the only isolated product. This methodology allows access to 3-vinylated indazoles selectively and directly without the need of N-protection. 3-Vinylindazoles could be interesting synthetic intermediates allowing access to biologically active molecules.


Assuntos
Ácidos Borônicos/química , Indazóis/química , Iodo/química , Micro-Ondas , Compostos de Vinila/química , Catálise , Glicóis/química , Estrutura Molecular , Oxirredução
3.
Biochim Biophys Acta ; 1848(10 Pt A): 2126-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26129642

RESUMO

Thermal behavior of Dipalmitoylphosphatidylcholine (DPPC) bilayers deposited over hydrogel fibers was examined. Thus, membrane stability, water absorption-release, phase transitions and phase transition temperatures were studied through different methods during heating cycles. Hydrogel films were realized using an oligomer mixture (HEMA-PEGDA575/photo-initiator) with adequate viscosity. Then, the fibers were deposited over silicon wafers (hydrophilic substrate) through electrospinning technique using four different voltages: 15, 20, 25 and 30 kV. The films were then exposed to UV light, favoring polymer chain crosslinking and interactions between hydrogel and substrate. For samples deposited at 20 and 25 kV, hierarchical wrinkle folds were observed at surface level, their arrangement distribution depends directly on thickness and associated point defects. DPPC bilayers were then placed over hydrogel scaffold using Langmuir-Blodgett technique. Field emission scanning electron microscopy (FE-SEM) analysis were used to investigate sample surface, micrographies show homogeneous layer formation with chain polymer order/disorder related to applied voltage during hydrogel deposition process, among other parameters. According to the results obtained, it is possible to conclude that the oligomer deposited at 20 kV produce thin homogenous films (~40 nm) with enhanced ability to absorb water and release it in a controlled way during heating cycles. These scaffold properties confer to DPPC membrane thermal stability, which allow an easy detection of phase(s) and phase transitions. Thermal behavior was also studied via Atomic Force Microscopy (roughness analysis). Contact angle measurements corroborate system wettability, supporting the theory that hydrogel thin films act as DPPC membrane enhancers for thermal stability against external stimuli.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Galvanoplastia/métodos , Hidrogéis/química , Bicamadas Lipídicas/síntese química , Nanofibras/química , Silício/química , Adsorção , Materiais Revestidos Biocompatíveis/síntese química , Teste de Materiais , Nanofibras/ultraestrutura , Tamanho da Partícula , Rotação
4.
J Phys Chem A ; 118(7): 1175-84, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24471743

RESUMO

FT-IR and Raman spectra of bis(4-aminophenyl)diphenylsilane (DIA) and a dicarboxylic acid containing the imide function and a L-alanine moiety (L-ALA) and their resultant polymer (PALA) were recorded in the 500-4000 cm(-1) and 400-3800 cm(-1) regions, respectively. The optically active poly(imide-amide) obtained has two sp(3) carbons in the main chain, favoring its flexibility. Raman analysis identifies the fluorescence produced by the electronic conjugation between the aromatic rings and the amidic groups, which affects the molecular fine structure. Thus, the theoretical study of the vibrational patterns has become a support and a complementary technique for the characterization of this fluorescent system. The optimized molecular geometry of the monomers and the polymeric unit using B3LYP and HF methods at the 6-31G(d) level of theory were used for the vibrational assignments. Thus, the small variations between the calculated and experimental vibration values could be related to possible intra- and/or intermolecular interactions or to the existence of a charge transfer phenomena between a donor or acceptor group within the system.

5.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514458

RESUMO

In this research, novel, organic, solid-liquid phase-change materials (PCMs) derived from methoxy polyethylene glycol (MPEG) and aromatic acyl chlorides (ACs) were prepared through a condensation reaction. The MPEGs were used as phase-change functional chains with different molecular weights (350, 550, 750, 2000, and 5000 g/mol). The aromatic ACs, terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC), were employed as bulky linker cores. Solubility tests demonstrated that this family of PCMs is soluble in protic polar solvents such as H2O and MeOH, and insoluble in nonpolar solvents such as n-hexane. Fourier-ransform infrared spectroscopy (FT-IR UATR) and nuclear magnetic resonance (1H, 13C, DEPT 135°, COSY, HMQC, and HMBC NMR) were used to confirm the bonding of MPEG chains to ACs. The crystalline morphology of the synthesized materials was examined using polarized optical microscopy (POM), revealing the formation of spherulites with Maltese-cross-extinction patterns. Furthermore, it was confirmed that PCMs with higher molecular weights were crystalline at room temperature and exhibited an increased average spherulite size compared to their precursors. Thermal stability tests conducted through thermogravimetric analysis (TGA) indicated decomposition temperatures close to 400 °C for all PCMs. The phase-change properties were characterized by differential scanning calorimetry (DSC), revealing that the novel PCMs melted and crystallized between -23.7 and 60.2 °C and -39.9 and 45.9 °C, respectively. Moreover, the heat absorbed and released by the PCMs ranged from 57.9 to 198.8 J/g and 48.6 to 195.6 J/g, respectively. Additionally, the PCMs exhibited thermal stability after undergoing thermal cycles of melting-crystallization, indicating that energy absorption and release occurred at nearly constant temperatures. This study presents a new family of high-performance organic PCMs and demonstrates that the orientation of substituent groups in the phenylene ring influences supercooling, transition temperatures, and thermal energy storage capacity depending on the MPEG molecular weight.

6.
Polymers (Basel) ; 15(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38006184

RESUMO

Ionenes are poly(ionic liquids) (PILs) comprising a polymer backbone with ionic groups along the structure. Ionenes as solid-solid phase change materials are a recent research field, and some studies have demonstrated their potential in thermal dissipation into electronic devices. Eight ionenes obtained through Menshutkin reactions were synthesized and characterized. The analysis of the thermal tests allowed understanding of how the thermal properties of the polymers depend on the aliphatic nature of the dihalogenated monomer and the carbon chain length. The TGA studies concluded that the ionenes were thermally stable with T10% above 420 °C. The DSC tests showed that the prepared ionenes presented solid-solid transitions, and no melting temperature was appreciated, which rules out the possibility of solid-liquid transitions. All ionenes were soluble in common polar aprotic solvents. The hydrophilicity of the synthesized ionenes was studied by the contact angle method, and their total surface energy was calculated. Self-healing behavior was preliminarily explored using a selected sample. Our studies show that the prepared ionenes exhibit properties that make them potential candidates for applications as solid-solid phase change materials.

7.
Polymers (Basel) ; 14(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501558

RESUMO

Desalinization of seawater can be achieved by membrane distillation techniques (MD). In MD, the membranes should be resistant to fouling, robust for extended operating time, and preferably provide a superhydrophobic surface. In this work, we report the preparation and characterization of a robust and superhydrophobic polyvinylidene fluoride membrane containing fluoroalkyl-capped CuONPs (CuONPs@CF) in the inner and fluorinated capped silicon oxide nanoparticles (SiO2NPs@CF) on its surface. SiO2NPs@CF with a mean diameter of 225 ± 20 nm were prepared by the sol method using 1H,1H,2H,2H-perfluorodecyltriethoxysilane as a capping agent. Surface modification of the membrane was carried out by spraying SiO2NPs@CF (5% wt.) dispersed in a mixture of dimethyl formamide (DMF) and ethanol (EtOH) at different DMF/EtOH % v/v ratios (0, 5, 10, 20, and 50). While ethanol dispersed the nanoparticles in the spraying solution, DMF dissolved the PVDF on the surface and retained the sprayed nanoparticles. According to SEM micrographs and water contact angle measurements, the best results were achieved by depositing the nanoparticles at 10% v/v of DMF/EtOH. Under these conditions, a SiO2NPs covered surface was observed with a water contact angle of 168.5°. The water contact angle was retained after the sonication of the membrane, indicating that the modification was successfully achieved. The membrane with SiO2NPs@CF showed a flux of 14.3 kg(m2·h)-1, 3.4 times higher than the unmodified version. The method presented herein avoids the complicated modification procedure offered by chemical step modification and, due to its simplicity, could be scalable to a commercial membrane.

8.
Polymers (Basel) ; 15(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616417

RESUMO

In the search for solution-processable TADF materials as a light emitting layer for OLED devices, polymers have attracted considerable attention due to their better thermal and morphological properties in the film state with respect to small molecules. In this work, a new polymer (p-TPS-DMAC-TRZ) with thermally activated delayed fluorescence (TADF) light-emitting characteristics was prepared from a conjugation-break unit (TPS) and a well-known TADF core (DAMC-TRZ). This material was designed to preserve the photophysical properties of DAMC-TRZ, while improving other properties, such as thermal stability, promoted by its polymerization with a TPS core. Along with excellent solubility in common organic solvents such as toluene, chloroform and THF, the polymer (Mn = 9500; Mw = 15200) showed high thermal stability (TDT5% = 481 °C), and a Tg value of 265 °C, parameters higher than the reference small molecule DMAC-TRZ (TDT5% = 305 °C; Tg = 91 °C). The photoluminescence maximum of the polymer was centered at 508 nm in the solid state, showing a low redshift compared to DMAC-TRZ (500 nm), while also showing a redshift in solution with solvents of increasing polarity. Time-resolved photoluminescence of p-TPS-DMAC-TRZ at 298 K, showed considerable delayed emission in solid state, with two relatively long lifetimes, 0.290 s (0.14) and 2.06 s (0.50), and a short lifetime of 23.6 ns, while at 77 K, the delayed emission was considerably quenched, and two lifetimes in total were observed, 24.6 ns (0.80) and 180 ns (0.20), which was expected from the slower RISC process at lower temperatures, decreasing the efficiency of the delayed emission and demonstrating that p-TPS-DMAC-TRZ has a TADF emission. This is in agreement with room temperature TRPL measurements in solution, where a decrease in both lifetime and delayed contribution to total photoluminescence was observed when oxygen was present. The PLQY of the mCP blend films with 1% p-TPS-DMAC-DMAC-TRZ as a dopant was determined to be equal to 0.62, while in the pure film, it was equal to 0.29, which is lower than that observed for DMAC-TRZ (0.81). Cyclic voltammetry experiments showed similarities between p-TPS-DMAC-TRZ and DAMC-TRZ with HOMO and LUMO energies of -5.14 eV and -2.76 eV, respectively, establishing an electrochemical bandgap value of 2.38 eV. The thin film morphology of p-TPS-DMAC-TRZ and DMAC-TRZ was compared by AFM and FE-SEM, and the results showed that p-TPS-DMAC-TRZ has a smoother surface with fewer defects, such as aggregations. These results show that the design strategy succeeded in improving the thermal and morphological properties in the polymeric material compared to the reference small molecule, while the photophysical properties were mostly maintained, except for the PLQY determined in the pure films. Still, these results show that p-TPS-DMAC-TRZ is a good candidate for use as a light-emitting layer in OLED devices, especially when used as a host-guest mixture in suitable materials such as mCP.

9.
Nanomaterials (Basel) ; 11(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198766

RESUMO

Water scarcity is an imminent problem that humanity is beginning to attempt to solve. Among the several technologies that have been developed to mitigate water scarcity, membrane distillation is of particular note. In the present work, CuO nanoparticles capped with 1-octanethiol (CuONPs@CH) or 1H,1H,2H,2H-perfluorodecanethiol (CuONPs@CF) are prepared. The nanoparticles are characterized by FT-IR and TGA methods. Two weight losses are observed in both cases, with the decomposition of the organic fragments beginning at 158 °C and 230 °C for CuONPs@CF and CuONPs@CH, respectively. Flat sheet PVDF composite membranes containing nanoparticles are prepared by the casting solution method using nanoparticle concentrations that ranged between 2-20% with a non-woven polyester fabric as support. The obtained membranes showed a thickness of 240 ± 40 µm. According to water contact angle (87° for CuONPs@CH and 95° for CuONPs@CF, both at 10% w.t) and roughness (12 pixel for CuONPs@CH and 14 pixels for CuONPs@CF, both at 10% w.t) determinations, the hydrophobicity of membranes changed due to a decrease in surface energy, while, for naked CuONPs, the roughness factor represents the main role. Membranes prepared with capped nanoparticles showed similar porosity (60-64%). SEM micrographs show asymmetric porous membranes with a 200-nm surface pore diameter. The largest finger-like pores in the membranes prepared with CuONPs, CuONPs@CH and CuONPs@CF had values of 63 ± 10 µm, 32 ± 8 µm, and 45 ± 10 µm, respectively. These membranes were submitted to a direct contact membrane distillation module and flux values of 1.8, 2.7, and 3.9 kg(m2·h)-1 at ΔT = 30 °C were obtained for the CuONPs, CuONPs@CH, and CuONPs@CF, respectively. The membranes showed 100% salt rejection during the testing time (240 min).

10.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513801

RESUMO

In the search for new materials to fight against antibiotic-resistant bacteria, a hybrid composite from metallic copper nanoparticles (CuNPs) and a novel cationic π-conjugated polyelectrolyte (CPE) were designed, synthesized, and characterized. The CuNPs were prepared by chemical reduction in the presence of CPE, which acts as a stabilizing agent. Spectroscopic analysis and electron microscopy showed the distinctive band of the metallic CuNP surface plasmon and their random distribution on the CPE laminar surface, respectively. Theoretical calculations on CuNP/CPE deposits suggest that the interaction between both materials occurs through polyelectrolyte side chains, with a small contribution of its backbone electron density. The CuNP/CPE composite showed antibacterial activity against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria, mainly attributed to the CuNPs' effect and, to a lesser extent, to the cationic CPE.

11.
Membranes (Basel) ; 10(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635517

RESUMO

A set of five new aromatic poly(imide)s (PIs) incorporating pendant acyclic alkyl moieties were synthesized. The difference among them was the length and bulkiness of the pendant group, which comprises of linear alkyl chains from three to six carbon atoms, and a tert-butyl moiety. The effect of the side group length on the physical, thermal, mechanical, and gas transport properties was analyzed. All PIs exhibited low to moderate molecular weights (Mn ranged between 27.930-58.970 Da, and Mw ranged between 41.760-81.310 Da), good solubility in aprotic polar solvents, except for PI-t-4, which had a tert-butyl moiety and was soluble even in chloroform. This behaviour was probably due to the most significant bulkiness of the side group that increased the interchain distance, which was corroborated by the X-ray technique (PI-t-4 showed two d-spacing values: 5.1 and 14.3 Å). Pure gas permeabilities for several gases were reported (PI-3 (Barrer): He(52); H2(46); O2(5.4); N2(1.2); CH4(1.1); CO2(23); PI-t-4 (Barrer): He(139); H2(136); O2(16.7); N2(3.3); CH4(2.3); CO2(75); PI-5 (Barrer): He(44); H2(42); O2(5.9); N2(1.4); CH4(1.2); CO2(27); PI-6 (Barrer): He(45); H2(43); O2(6.7); N2(1.7); CH4(1.7); CO2(32)). Consistent higher volume in the side group was shown to yield the highest gas permeability. All poly(imide)s exhibited high thermal stability with 10% weight loss degradation temperature between 448-468 °C and glass transition temperature between 240-270 °C. The values associated to the tensile strength (45-87 MPa), elongation at break (3.2-11.98%), and tensile modulus (1.43-2.19 GPa) were those expected for aromatic poly(imide)s.

12.
Polymers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575423

RESUMO

Poly[(5,5'-(2,3-bis(2-ethylhexyloxy)naphthalene-1,4-diyl)bis(thiophene-2,2'-diyl))-alt-(2,1,3-benzothiadiazole-4,7-diyl)] (PEHONDTBT) was synthesized for the first time and through direct arylation polymerization (DAP) for use as p-donor material in organic solar cells. Optimized reaction protocol leads to a donor-acceptor conjugated polymer in good yield, with less structural defects than its analog obtained from Suzuki polycondensation, and with similar or even higher molecular weight than other previously reported polymers based on the 2,3-dialkoxynaphthalene monomer. The batch-to-batch repeatability of the optimized DAP conditions for the synthesis of PEHONDTBT was proved, showing the robustness of the synthetic strategy. The structure of PEHONDTBT was corroborated by NMR, exhibiting good solubility in common organic solvents, good film-forming ability, and thermal stability. PEHONDTBT film presented an absorption band centered at 498 nm, a band gap of 2.15 eV, and HOMO and LUMO energy levels of -5.31 eV and -3.17 eV, respectively. Theoretical calculations were performed to understand the regioselectivity in the synthesis of PEHONDTBT and to rationalize its optoelectronic properties. Bilayer heterojunction organic photovoltaic devices with PEHONDTBT as the donor layer were fabricated to test their photovoltaic performance, affording low power-conversion efficiency in the preliminary studies.

13.
Polymers (Basel) ; 11(2)2019 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-30960202

RESUMO

Three new triphenylamine-based oligomeric Schiff bases (polySB1, polySB2 and polySB3) containing tetraphenylsilane core (TPS-core) in the main chain were obtained from TPS-core-based diamines and bis(4-formylphenyl)phenylamine by a high-temperature polycondensation reaction. These new oligomers were structurally characterized by FT-IR, NMR and elemental analysis. All polySBs were highly soluble in common organic solvents, such as chloroform, tetrahydrofuran and chlorobenzene. Samples showed moderate molecular average molecular weight (Mw) and a high thermal stability above 410 °C. Likewise, polySBs showed absorption near 400 nm in the UV-vis range and photoluminescence. The HOMO levels and band-gap values were found in the ranges of -6.06 to -6.18 eV and 2.65⁻2.72 eV, respectively. The lowest band-gap value was observed for polySB2, which could be attributed to a more effective π-conjugation across the main chain. The results suggest that silicon-containing polySBs are promising wide-band-gap semiconductors materials for optoelectronic applications.

14.
Polymers (Basel) ; 11(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052323

RESUMO

Three new aromatic poly(imides) containing benzimidazole units in the backbone were synthesized and characterized by several spectroscopic techniques. Flexible spacer groups were incorporated into the poly(imides) structure to improve their solubility in organic solvents and their oxidative stabilization. All poly(imides) were thermally stable (Td5% > 512 °C) and had the ability to form dense flexible films. Novel composite films were successfully prepared by loading poly(imide) with ionic liquid ([Bmim]Br) at different concentrations up to 25 wt.%. The resulting materials were characterized according to their morphology and elemental composition (SEM-EDX), water uptake capability, contact angle, and oxidative degradation resistance. Results suggested that poly(imide)/ionic liquid composites would be excellent candidates for future proton conductivity measurements.

15.
Polymers (Basel) ; 10(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30960787

RESUMO

Membrane distillation techniques have appeared as promising options for guaranteeing the availability of potable water in times of scarcity of this essential resource. For membrane preparation, polyvinylidene fluoride (PVDF) is preferred due to the easier synthesis procedures, with respect to other fluorine-based polymers. In this work, copper oxide nanoparticles (CuONPs) of different weight percent (wt %) embedded in PVDF membranes supported on non-woven polyester fabric (NWPET) were prepared by the phase inversion method, and characterized by spectroscopy (ATR-FTIR, Raman) and electron microscopy techniques (SEM). The PVDF deposited onto the NWPET was mostly composed of its polar ß-phase (F(ß) = 53%), which was determined from the ATR-FTIR spectrum. The F(ß) value remained constant throughout the whole range of added CuONP concentrations (2⁻10 wt %), as was determined from the ATR-FTIR spectrum. The absence of signals corresponding to CuONPs in the ATR-FTIR spectra and the appearance of peaks at 297, 360, and 630 cm-1 in the Raman spectra of the membranes suggest that the CuONPs are preferably located in the inner PVDF membrane, but not on its surface. The membrane morphologies were characterized by SEM. From the obtained SEM micrographs, a decrease and increase in the amount of micropores and nanopores, respectively, near the surface and intercalated in the finger-like layer were observed. As a result of the CuONP addition, the nanopores in the sponge-like layer decreased in size. The values of water contact angle (WCA) measurements showed a decreasing trend, from 94° to 80°, upon the addition of CuONPs (2⁻10 wt %), indicating a diminishment in the hydrophobicity degree of the membranes. Apparently, the increase in the amount of nanopores near the surface decreased the membrane roughness, so it became less hydrophobic.

16.
Polymers (Basel) ; 10(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30966587

RESUMO

A new series of two-dimensional statistical conjugated polymers based on aniline and 9,9-dihexylfluorene as donor units and benzo- or naphtho-quinoxaline/thiadiazole derivatives as acceptor moieties, possessing PANI segments as side chains, were designed and synthesized. To investigate the effects of the perpendicular PANI branches on the properties of the main chain, the optical, electrochemical, morphological and electroluminescence properties were studied. The 2D materials tend to possess lower molecular weights and to absorb and to emit light red-shifted compared to the trunk 1D-polymers, in the yellow-red region of the visible spectrum. The 1D- and 2D-conjugated polymers present optical band gaps ranging from 2.15⁻2.55 eV, HOMO energy levels between -5.37 and -5.60 eV and LUMO energy levels between -3.02 and -3.29 eV. OLED devices based on these copolymers were fabricated. Although the performances were far from optimal due to the high turn-on voltages for which electroluminescence phenomena occur, a maximum luminescence of 55,100 cd/m² together with a current density of 65 mA/cm² at 18.5 V were recorded for a 2D-copolymer, PAFC6TBQ-PANI.

17.
RSC Adv ; 8(3): 1296-1312, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35540926

RESUMO

In this study, four new silicon-containing poly(ether-azomethine)s with linear structures were prepared using original silicon and biphenyl moiety-containing monomers: two diamines and two dialdehydes. The oligomeric natures of the samples were established by GPC analysis, which showed chains containing 3 to 5 repetitive units. The monomers and the oligomeric samples were structurally characterized by NMR and FT-IR spectroscopy. The solubilities of the samples in common organic solvents and their thermal behavior enable improvement of their industrial and technological processability. The optical band gaps of the oligomeric samples were estimated from optical measurements (UV-vis), and their electrical behavior in films was determined using the four-point method. The surface arrangements and morphological characteristics of the films were determined via atomic force microscopy measurements. The roughness, area increase percentage and layer stiffness of the films were also measured using this technique.

18.
Biosensors (Basel) ; 7(3)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820461

RESUMO

Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed-like biosensors-based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures-with differences in its aliphatic chain length-present a co-existence of two thermal responses due to non-ideal mixing.


Assuntos
Bicamadas Lipídicas/química , Transição de Fase , Fosfatidilcolinas/química , Temperatura Alta , Refratometria/métodos , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa