Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Arch Toxicol ; 93(6): 1779-1788, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31053889

RESUMO

Toxicological risk assessment of plant protection products (PPP) is currently carried out with the principal input from regulatory toxicology studies following OECD test guidelines, with little input from epidemiological data. An EFSA-commissioned systematic review of pesticide epidemiological studies (Ntzani et al. in Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA supporting publication 2013:EN-497, 2013) revealed statistically significant associations, among others, between pesticide exposures, and Parkinson's disease and childhood leukemia. Thereafter, EFSA launched a project with a mandate for the plant protection products and their residues (PPR) Panel to set the ground for the use of epidemiological data in the risk assessment of pesticides, as requested by Regulation (EC) 1107/2009. The project culminated with the publication of two EFSA's scientific opinions on the potential contribution of experimental investigations and epidemiological studies in PPP risk assessment and with the scientific conference held on 20 November 2017, in Parma, Italy. The application of modern methodologies in exposure assessment, toxicology and epidemiology would improve the pesticide risk assessment process and support a mechanistic shift for the integration of these three disciplines under a novel paradigm in risk assessment. The application of the adverse outcome pathway (AOP) conceptual framework to this approach would contribute to gain insight into the biological plausibility of a hazard identified in epidemiological or experimental studies and would inform an Integrated Approach to Testing and Assessment (IATA) within a regulatory context.


Assuntos
Estudos Epidemiológicos , Praguicidas/toxicidade , Medição de Risco , Rotas de Resultados Adversos , Agroquímicos , Animais , Europa (Continente) , Inocuidade dos Alimentos , Humanos , Estados Unidos , United States Environmental Protection Agency
2.
Toxicol Appl Pharmacol ; 354: 19-23, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29454059

RESUMO

There is a need for a more effective Developmental Neurotoxicity (DNT) screening which is scientifically driven by the fact that the developing nervous system might be more sensitive to exposures to some hazardous chemical. Additional concern comes from the recent societal concerns that toxic chemicals can contribute to the prevalence of neurodevelopment disabilities. Consequently, hazard identification and actions to reduce exposure to these chemicals is a priority in chemical risk assessment. To reach this goal a cost-efficient testing strategy based on a reliable in-vitro testing battery should be developed. Although this goal is representing a huge challenge in risk assessment, available data and methodologies are supporting the ultimate aim of developing a predictive model able to respond to different regulatory based problem formulations.


Assuntos
Alternativas aos Testes com Animais , Encéfalo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais/legislação & jurisprudência , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Consenso , Humanos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Formulação de Políticas , Reprodutibilidade dos Testes , Medição de Risco
3.
Toxicol Appl Pharmacol ; 354: 3-6, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447839

RESUMO

This consensus statement voices the agreement of scientific stakeholders from regulatory agencies, academia and industry that a new framework needs adopting for assessment of chemicals with the potential to disrupt brain development. An increased prevalence of neurodevelopmental disorders in children has been observed that cannot solely be explained by genetics and recently pre- and postnatal exposure to environmental chemicals has been suspected as a causal factor. There is only very limited information on neurodevelopmental toxicity, leaving thousands of chemicals, that are present in the environment, with high uncertainty concerning their developmental neurotoxicity (DNT) potential. Closing this data gap with the current test guideline approach is not feasible, because the in vivo bioassays are far too resource-intensive concerning time, money and number of animals. A variety of in vitro methods are now available, that have the potential to close this data gap by permitting mode-of-action-based DNT testing employing human stem cells-derived neuronal/glial models. In vitro DNT data together with in silico approaches will in the future allow development of predictive models for DNT effects. The ultimate application goals of these new approach methods for DNT testing are their usage for different regulatory purposes.


Assuntos
Encéfalo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade/normas , Toxicologia/normas , Fatores Etários , Alternativas aos Testes com Animais/normas , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Consenso , Difusão de Inovações , Humanos , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Formulação de Políticas , Reprodutibilidade dos Testes , Medição de Risco , Participação dos Interessados , Testes de Toxicidade/métodos , Toxicologia/métodos
4.
Arch Toxicol ; 92(1): 41-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29209747

RESUMO

Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.


Assuntos
Rotas de Resultados Adversos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Transtornos Parkinsonianos/induzido quimicamente , Praguicidas/toxicidade , Animais , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transtornos Parkinsonianos/etiologia , Rotenona/toxicidade
6.
Arch Toxicol ; 91(8): 2763-2780, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28536863

RESUMO

Infant leukaemia (<1 year old) is a rare disease of an in utero origin at an early phase of foetal development. Rearrangements of the mixed-lineage leukaemia (MLL) gene producing abnormal fusion proteins are the most frequent genetic/molecular findings in infant B cell-acute lymphoblastic leukaemia. In small epidemiological studies, mother/foetus exposures to some chemicals including pesticides have been associated with infant leukaemia; however, the strength of evidence and power of these studies are weak at best. Experimental in vitro or in vivo models do not sufficiently recapitulate the human disease and regulatory toxicology studies are unlikely to capture this kind of hazard. Here, we develop an adverse outcome pathway (AOP) based substantially on an analogous disease-secondary acute leukaemia caused by the topoisomerase II (topo II) poison etoposide-and on cellular and animal models. The hallmark of the AOP is the formation of MLL gene rearrangements via topo II poisoning, leading to fusion genes and ultimately acute leukaemia by global (epi)genetic dysregulation. The AOP condenses molecular, pathological, regulatory and clinical knowledge in a pragmatic, transparent and weight of evidence-based framework. This facilitates the interpretation and integration of epidemiological studies in the process of risk assessment by defining the biologically plausible causative mechanism(s). The AOP identified important gaps in the knowledge relevant to aetiology and risk assessment, including the specific embryonic target cell during the short and spatially restricted period of susceptibility, and the role of (epi)genetic features modifying the initiation and progression of the disease. Furthermore, the suggested AOP informs on a potential Integrated Approach to Testing and Assessment to address the risk caused by environmental chemicals in the future.


Assuntos
Rotas de Resultados Adversos , Praguicidas/toxicidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Animais , Exposição Ambiental , Etoposídeo/toxicidade , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Medição de Risco/métodos , Inibidores da Topoisomerase II/toxicidade
7.
Arch Toxicol ; 91(11): 3477-3505, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29051992

RESUMO

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.


Assuntos
Rotas de Resultados Adversos , Ecotoxicologia/métodos , Animais , Ecotoxicologia/história , História do Século XXI , Humanos , Camundongos Endogâmicos C57BL , Controle de Qualidade , Medição de Risco/métodos , Biologia de Sistemas , Toxicocinética , Compostos de Vinila/efeitos adversos
8.
FASEB J ; 29(7): 2930-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25818588

RESUMO

Hypothalamo-pituitary-adrenocortical dysfunction contributes to morbidity and mortality in a high proportion of patients with sepsis. Here, we provide new insights into the underlying adrenal pathology. Using a murine model of endotoxemia (LPS injection), we demonstrate that adrenal insufficiency is triggered early in the disease. LPS induced a local inflammatory response in the adrenal gland within 4 hours of administration, coupled with increased expression of mRNAs for annexin A1 (AnxA1) and the formyl peptide receptors [(Fprs) 1, 2, and 3], a loss of lipid droplets in cortical cells (index of availability of cholesterol, the substrate for steroidogenesis), and a failure to mount a steroidogenic response to ACTH. Deletion of AnxA1 or Fpr2/3 in mice prevented lipid droplet loss, but not leukocyte infiltration. LPS increased adrenal myeloid differentiation primary response gene 88 and TLR2 mRNA expression, but not lymphocyte antigen 96 or TLR4. By contrast, neutrophil depletion prevented leukocyte infiltration and increased AnxA1, Fpr1, and Fpr3 mRNAs but had no impact on lipid droplet loss. Our novel data demonstrate that AnxA1 and Fpr2 have a critical role in the manifestation of adrenal insufficiency in this model, through regulation of cholesterol ester storage, suggesting that pharmacologic interventions targeting the AnxA1/FPR/ALX pathway may provide a new approach for the maintenance of adrenal steroidogenesis in sepsis.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Anexina A1/deficiência , Lipopolissacarídeos/toxicidade , Receptores de Formil Peptídeo/deficiência , Córtex Suprarrenal/patologia , Insuficiência Adrenal/induzido quimicamente , Insuficiência Adrenal/etiologia , Insuficiência Adrenal/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Ésteres do Colesterol , Corticosterona/biossíntese , Citocinas/sangue , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais
9.
EFSA J ; 22(8): e8954, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109086

RESUMO

The adverse outcome pathway (AOP) framework serves as a practical tool for organising scientific knowledge that can be used to infer cause-effect relationships between stressor events and toxicity outcomes in intact organisms. However, a major challenge in the broader application of the AOP concept within regulatory toxicology is the development of a robust AOPs that can withstand peer review and acceptance. This is mainly due to the considerable amount of work required to substantiate the modular units of a complete AOP, which can take years from inception to completion. The methodology used here consisted of an initial assessment of a single chemical hazard using the Integrated Approach to Testing and Assessment (IATA) framework. An evidence-based approach was then used to gather empirical evidence combining systematic literature review methods with expert knowledge to ensure the effectiveness of the AOP development methodology. The structured framework used assured transparency, objectivity and comprehensiveness, and included expert knowledge elicitation for the evaluation of key event relationships (KERs). This stepwise approach led to the development of an AOP that begins with binding of chemicals to Voltage Gate Sodium Channels (VGSC/Nav) during mammalian development leading to adverse consequences in neurodevelopment evidenced as deficits in cognitive functions. Disruption of the formation of precise neural circuits by alterations in VGSC kinetics during the perinatal stages of brain development may also underlie neurodevelopmental disorders. Gaps in our understanding include the specific critical developmental windows and the quantitative relationship of binding to VGSC and subsequent disruption and cognitive function. Despite the limited quantitative information at all KER levels, regulatory applications of this AOP for DNT assessment have been identified.

10.
EFSA J ; 22(5): e8759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751503

RESUMO

Acetamiprid is a pesticide active substance with insecticidal action whose approval was renewed by Commission Implementing Regulation (EU) 2018/113. In January 2022, the EFSA PPR Panel published a statement following a request from the European Commission to advise on human health or the environment based on new scientific evidence presented by France during the decision-making phase. In July 2022, by means of a further mandate received from the European Commission, EFSA was requested to provide advice if new information and any other scientific evidence that has become available since the assessment conducted for the renewal in 2018 warrant re-evaluation of (i) toxicological parameters used for the risk assessment of acetamiprid during the renewal process, including toxicological endpoints; (ii) the residue definition for acetamiprid in products of plant origin; and (iii) the safety of existing maximum residue levels (MRLs). Meanwhile, the applicant of acetamiprid in the EU submitted new toxicology studies regarding the toxicological profile of the metabolite IM-2-1. Furthermore, the European Commission was made aware that several recent publications in scientific literature were made available after the literature searches conducted by EFSA. As the new data could affect the advice that EFSA was expected to deliver through the 2022 mandate, EFSA was further requested to consider this information by means of a revised mandate received in September 2023. As regards re-evaluation of point (i) in this statement, this was addressed by an EFSA Working Group integrating all the available evidence. The results of the weight of evidence indicated that there are major uncertainties in the body of evidence for the developmental neurotoxicity (DNT) properties of acetamiprid and further data are therefore needed to come to a more robust mechanistic understanding to enable appropriate hazard and risk assessment. In view of these uncertainties, the EFSA WG proposed to lower the acceptable daily intake (ADI) and acute reference dose (ARfD) from 0.025 to 0.005 mg/kg body weight (per day). A revised residue definition for risk assessment was proposed for leafy and fruit crops as sum of acetamiprid and N-desmethyl-acetamiprid (IM-2-1), expressed as acetamiprid. Regarding pulses/oilseeds, root crops and cereals, the new data received did not indicate a need to modify the existing residue definition for risk assessment, which therefore remains as parent acetamiprid. Regarding the residue definition for enforcement, the available data did not indicate a need to modify the existing definition because acetamiprid is still a sufficient marker of the residues in all crop groups. Considering the new health-based guidance values derived in the present statement, a risk for consumer has been identified for 38 MRLs currently in place in the EU Regulation. Consequently, EFSA recommended to lower the existing MRLs for 38 commodities based on the assessment of fall-back Good Agricultural Practices received within an ad hoc data call. Some fall-back MRLs proposals require further risk management considerations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa