Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 220: 117082, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32593801

RESUMO

Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and orientation of the coil or peak stimulating electric field to elicit motor responses in a target muscle. This target search is laborious, and the result is user-dependent. Here, we present a closed-loop search method that utilizes automatic electronic adjustment of the stimulation based on the previous responses. The electronic adjustment is achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the principles of Bayesian optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on five healthy volunteers and further offline simulations showed that our adaptively guided search method needs only a relatively small number of stimuli to provide outcomes with good accuracy and precision. The automated method enables fast and user-independent optimization of stimulation parameters in research and clinical applications of TMS.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Algoritmos , Teorema de Bayes , Feminino , Humanos , Masculino
2.
Brain Stimul ; 15(2): 523-531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337598

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of various brain dysfunctions. However, the optimal way to target stimulation and administer TMS therapies, for example, where and in which electric field direction the stimuli should be given, is yet to be determined. OBJECTIVE: To develop an automated closed-loop system for adjusting TMS parameters (in this work, the stimulus orientation) online based on TMS-evoked brain activity measured with electroencephalography (EEG). METHODS: We developed an automated closed-loop TMS-EEG set-up. In this set-up, the stimulus parameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an algorithm that automatically optimizes the stimulation orientation based on single-trial EEG responses. We applied the algorithm to determine the electric field orientation that maximizes the amplitude of the TMS-EEG responses. The validation of the algorithm was performed with six healthy volunteers, repeating the search twenty times for each subject. RESULTS: The validation demonstrated that the closed-loop control worked as desired despite the large variation in the single-trial EEG responses. We were often able to get close to the orientation that maximizes the EEG amplitude with only a few tens of pulses. CONCLUSION: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables effective coupling to brain activity.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Mapeamento Encefálico , Retroalimentação , Humanos
3.
Brain Stimul ; 15(1): 116-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34818580

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. OBJECTIVE: To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. METHODS: We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. RESULTS: The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. CONCLUSION: The developed mTMS system enables electronically targeted brain stimulation within a cortical region.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Eletromiografia/métodos , Potencial Evocado Motor , Humanos , Córtex Motor/fisiologia , Técnicas Estereotáxicas , Estimulação Magnética Transcraniana/métodos
4.
PLoS One ; 16(9): e0257554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34550997

RESUMO

Besides stimulus intensities and interstimulus intervals (ISI), the electric field (E-field) orientation is known to affect both short-interval intracortical inhibition (SICI) and facilitation (SICF) in paired-pulse transcranial magnetic stimulation (TMS). However, it has yet to be established how distinct orientations of the conditioning (CS) and test stimuli (TS) affect the SICI and SICF generation. With the use of a multi-channel TMS transducer that provides electronic control of the stimulus orientation and intensity, we aimed to investigate how changes in the CS and TS orientation affect the strength of SICI and SICF. We hypothesized that the CS orientation would play a major role for SICF than for SICI, whereas the CS intensity would be more critical for SICI than for SICF. In eight healthy subjects, we tested two ISIs (1.5 and 2.7 ms), two CS and TS orientations (anteromedial (AM) and posteromedial (PM)), and four CS intensities (50, 70, 90, and 110% of the resting motor threshold (RMT)). The TS intensity was fixed at 110% RMT. The intensities were adjusted to the corresponding RMT in the AM and PM orientations. SICI and SICF were observed in all tested CS and TS orientations. SICI depended on the CS intensity in a U-shaped manner in any combination of the CS and TS orientations. With 70% and 90% RMT CS intensities, stronger PM-oriented CS induced stronger inhibition than weaker AM-oriented CS. Similar SICF was observed for any CS orientation. Neither SICI nor SICF depended on the TS orientation. We demonstrated that SICI and SICF could be elicited by the CS perpendicular to the TS, which indicates that these stimuli affected either overlapping or strongly connected neuronal populations. We concluded that SICI is primarily sensitive to the CS intensity and that CS intensity adjustment resulted in similar SICF for different CS orientations.


Assuntos
Potencial Evocado Motor/fisiologia , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Eletromiografia , Voluntários Saudáveis , Humanos , Masculino , Córtex Motor/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa