Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 106(8): 2102-2113, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32616529

RESUMO

Adhesive properties of leukemia cells shape the degree of organ infiltration and the extent of leukocytosis. CD44 and the integrin VLA-4, a CD49d/CD29 heterodimer, are important factors of progenitor cell adhesion in bone marrow (BM). Here, we report their cooperation in acute myeloid leukemia (AML) by a novel non-classical CD44-mediated way of inside-out VLA-4 activation. In primary AML BM samples from patients and the OCI-AML3 cell line, CD44 engagement by hyaluronan induced inside-out activation of VLA-4 resulting in enhanced leukemia cell adhesion on VCAM-1. This was independent from VLA-4 affinity regulation but based on ligand-induced integrin clustering on the cell surface. CD44-induced VLA-4 activation could be inhibited by the Src family kinase inhibitor PP2 and the multikinase inhibitor midostaurin. In further consequence, the increased adhesion on VCAM-1 allowed AML cells to strongly bind stromal cells. Thereby VLA-4/VCAM-1 interaction promoted activation of Akt, MAPK, NF-kB and mTOR signaling and decreased AML cell apoptosis. Collectively, our investigations provide a mechanistic description of an unusual CD44 function in regulating VLA-4 avidity in AML, supporting AML cell retention in the supportive BM microenvironment.


Assuntos
Integrina alfa4beta1 , Leucemia Mieloide Aguda , Medula Óssea , Adesão Celular , Humanos , Receptores de Hialuronatos/genética , Microambiente Tumoral , Molécula 1 de Adesão de Célula Vascular/genética
2.
Int J Cancer ; 142(5): 968-975, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29055107

RESUMO

Aberrant activation of Hedgehog (HH)/GLI signaling is causally involved in numerous human malignancies, including basal cell carcinoma (BCC) and medulloblastoma. HH pathway antagonists targeting smoothened (SMO), an essential effector of canonical HH/GLI signaling, show significant clinical success in BCC patients and have recently been approved for the treatment of advanced and metastatic BCC. However, rapid and frequent development of drug resistance to SMO inhibitors (SMOi) together with severe side effects caused by prolonged SMOi treatment call for alternative treatment strategies targeting HH/GLI signaling downstream of SMO. In this study, we report that 4SC-202, a novel clinically validated inhibitor of class I histone deacetylases (HDACs), efficiently blocks HH/GLI signaling. Notably, 4SC-202 treatment abrogates GLI activation and HH target gene expression in both SMOi-sensitive and -resistant cells. Mechanistically, we propose that the inhibition of HDACs 1/2/3 is crucial for targeting oncogenic HH/GLI signaling, and that class I HDAC inhibitors either in combination with SMOi or as second-line therapy may improve the treatment options for HH-associated malignancies with SMOi resistance.


Assuntos
Benzamidas/farmacologia , Carcinoma Basocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/antagonistas & inibidores , Histona Desacetilases/química , Receptor Smoothened/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Animais , Apoptose , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Proliferação de Células , Proteínas Hedgehog/metabolismo , Histona Desacetilases/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais , Receptor Smoothened/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco/metabolismo
3.
Int J Cancer ; 143(11): 2943-2954, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29987839

RESUMO

Persistent activation of hedgehog (HH)/GLI signaling accounts for the development of basal cell carcinoma (BCC), a very frequent nonmelanoma skin cancer with rising incidence. Targeting HH/GLI signaling by approved pathway inhibitors can provide significant therapeutic benefit to BCC patients. However, limited response rates, development of drug resistance, and severe side effects of HH pathway inhibitors call for improved treatment strategies such as rational combination therapies simultaneously inhibiting HH/GLI and cooperative signals promoting the oncogenic activity of HH/GLI. In this study, we identified the interleukin-6 (IL6) pathway as a novel synergistic signal promoting oncogenic HH/GLI via STAT3 activation. Mechanistically, we provide evidence that signal integration of IL6 and HH/GLI occurs at the level of cis-regulatory sequences by co-binding of GLI and STAT3 to common HH-IL6 target gene promoters. Genetic inactivation of Il6 signaling in a mouse model of BCC significantly reduced in vivo tumor growth by interfering with HH/GLI-driven BCC proliferation. Our genetic and pharmacologic data suggest that combinatorial HH-IL6 pathway blockade is a promising approach to efficiently arrest cancer growth in BCC patients.


Assuntos
Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Proteínas Hedgehog/metabolismo , Interleucina-6/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Animais , Carcinogênese/metabolismo , Proliferação de Células/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Transativadores/metabolismo
4.
Front Cell Dev Biol ; 10: 944760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990601

RESUMO

While the underlying genetic alterations and biology of acute myeloid leukemia (AML), an aggressive hematologic malignancy characterized by clonal expansion of undifferentiated myeloid cells, have been gradually unraveled in the last decades, translation into clinical treatment approaches has only just begun. High relapse rates remain a major challenge in AML therapy and are to a large extent attributed to the persistence of treatment-resistant leukemic stem cells (LSCs). The Hedgehog (HH) signaling pathway is crucial for the development and progression of multiple cancer stem cell driven tumors, including AML, and has therefore gained interest as a therapeutic target. In this review, we give an overview of the major components of the HH signaling pathway, dissect HH functions in normal and malignant hematopoiesis, and specifically elaborate on the role of HH signaling in AML pathogenesis and resistance. Furthermore, we summarize preclinical and clinical HH inhibitor studies, leading to the approval of the HH pathway inhibitor glasdegib, in combination with low-dose cytarabine, for AML treatment.

5.
Cancers (Basel) ; 11(4)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991683

RESUMO

The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells (CSC), which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. Efficacious therapeutic approaches targeting CSC pathways, such as HH/GLI signaling in combination with chemo, radiation or immunotherapy are, therefore, of high medical need. Pharmacological inhibition of HH/GLI pathway activity represents a promising approach to eliminate malignant CSC. Clinically approved HH/GLI pathway inhibitors target the essential pathway effector Smoothened (SMO) with striking therapeutic efficacy in skin and brain cancer patients. However, multiple genetic and molecular mechanisms resulting in de novo and acquired resistance to SMO inhibitors pose major limitations to anti-HH/GLI therapies and, thus, the eradication of CSC. In this review, we summarize reasons for clinical failure of SMO inhibitors, including mechanisms caused by genetic alterations in HH pathway effectors or triggered by additional oncogenic signals activating GLI transcription factors in a noncanonical manner. We then discuss emerging novel and rationale-based approaches to overcome SMO-inhibitor resistance, focusing on pharmacological perturbations of enzymatic modifiers of GLI activity and on compounds either directly targeting oncogenic GLI factors or interfering with synergistic crosstalk signals known to boost the oncogenicity of HH/GLI signaling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa