Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083434

RESUMO

Explaining why some species are widespread, while others are not, is fundamental to biogeography, ecology, and evolutionary biology. A unique way to study evolutionary and ecological mechanisms that either limit species' spread or facilitate range expansions is to conduct research on species that have restricted distributions. Nonindigenous species, particularly those that are highly invasive but have not yet spread beyond the introduced site, represent ideal systems to study range size changes. Here, we used species distribution modeling and genomic data to study the restricted range of a highly invasive Australian marine species, the ascidian Pyura praeputialis This species is an aggressive space occupier in its introduced range (Chile), where it has fundamentally altered the coastal community. We found high genomic diversity in Chile, indicating high adaptive potential. In addition, genomic data clearly showed that a single region from Australia was the only donor of genotypes to the introduced range. We identified over 3,500 km of suitable habitat adjacent to its current introduced range that has so far not been occupied, and importantly species distribution models were only accurate when genomic data were considered. Our results suggest that a slight change in currents, or a change in shipping routes, may lead to an expansion of the species' introduced range that will encompass a vast portion of the South American coast. Our study shows how the use of population genomics and species distribution modeling in combination can unravel mechanisms shaping range sizes and forecast future range shifts of invasive species.


Assuntos
Variação Genética , Genômica , Genótipo , Espécies Introduzidas , Urocordados/genética , Animais , Austrália , Chile
2.
Mol Biol Rep ; 51(1): 21, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108856

RESUMO

BACKGROUND: The Octopus vulgaris species complex consists of numerous morphologically similar but genetically distinct species. The current publicly available mitogenome of this species has been generated from a specimen collected from Tsukiji Fish Market, Tokyo, Japan. Octopus from the northwestern Pacific Ocean are now considered to be a separate species, Octopus sinensis. For this reason, we hypothesised that the current record of O. vulgaris was sequenced from a specimen of O. sinensis. Here, we sequenced the first complete mitogenome of a specimen of Octopus vulgaris sensu stricto that was collected from the species' confirmed distribution areas in northeastern Atlantic. METHODS AND RESULTS: The complete mitogenome was assembled de novo and annotated using 250 bp paired-end sequences. A single circular contig 15,655 bp in length with a mean read coverage of 1089 reads was reconstructed. The annotation pipeline identified 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNA) and two ribosomal RNAs. A maximum likelihood phylogenetic tree recovered the assembled mitogenome as the sister taxon of a monophyletic group comprising O. sinensis and the previously published mitogenome of "O. vulgaris" from Japan. This confirms that the latter was a Japanese specimen of O. sinensis. CONCLUSION: The mitogenome sequenced here is the first to be published for Octopus vulgaris sensu stricto. It represents an important first step in genetics-informed research on the evolution, conservation, and management of this commercially important species.


Assuntos
Genoma Mitocondrial , Octopodiformes , Animais , Genoma Mitocondrial/genética , Octopodiformes/genética , Filogenia , Japão , Oceano Pacífico
3.
Proc Biol Sci ; 286(1896): 20182023, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963923

RESUMO

Intraspecific genetic structure in widely distributed marine species often mirrors the boundaries between temperature-defined bioregions. This suggests that the same thermal gradients that maintain distinct species assemblages also drive the evolution of new biodiversity. Ecological speciation scenarios are often invoked to explain such patterns, but the fact that adaptation is usually only identified when phylogenetic splits are already evident makes it impossible to rule out the alternative scenario of allopatric speciation with subsequent adaptation. We integrated large-scale genomic and environmental datasets along one of the world's best-defined marine thermal gradients (the South African coastline) to test the hypothesis that incipient ecological speciation is a result of divergence linked to the thermal environment. We identified temperature-associated gene regions in a coastal fish species that is spatially homogeneous throughout several temperature-defined biogeographic regions based on selectively neutral markers. Based on these gene regions, the species is divided into geographically distinct regional populations. Importantly, the ranges of these populations are delimited by the same ecological boundaries that define distinct infraspecific genetic lineages in co-distributed marine species, and biogeographic disjunctions in species assemblages. Our results indicate that temperature-mediated selection represents an early stage of marine ecological speciation in coastal regions that lack physical dispersal barriers.


Assuntos
Meio Ambiente , Especiação Genética , Perciformes/genética , Água do Mar/química , Animais , Temperatura Baixa , Temperatura Alta , Oceanos e Mares , África do Sul
4.
Mol Phylogenet Evol ; 117: 95-101, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28559212

RESUMO

Southern Africa is a biodiversity hotspot of patellid limpets, with three genera (Helcion, Cymbula and Scutellastra) identified and described in the region. Scutellastra is the most diverse and most frequently studied of these and, along with Cymbula, includes species with territorial and non-territorial foraging behaviours. We used three mitochondrial markers (12S rRNA, 16S rRNA and COI) and one nuclear marker (ATPSß intron) to assess evolutionary relationships among species of Cymbula and Scutellastra with these two foraging behaviours and to identify which foraging mode is the more ancient. Maximum Likelihood and Bayesian Inference phylogenetic analyses revealed that the species sharing a foraging type are monophyletic in both genera. Territoriality is a derived character, as the clades with this foraging type are nested within a tree that otherwise comprises non-territorial taxa. These include Helcion, which was recovered as sister to the Cymbula/Scutellastra clade, and the next basal genus, Patella, which is ancestral to all southern African patellogastropods. Deep genetic divergence between the two foraging traits reflects strong adaptive effects of resource partitioning in the evolution of southern African patellid limpets.


Assuntos
Evolução Molecular , Gastrópodes/genética , Gastrópodes/fisiologia , Deriva Genética , Filogenia , África Austral , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Íntrons/genética , RNA Ribossômico/genética , RNA Ribossômico 16S/genética
5.
Biol Lett ; 11(5): 20141037, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25948571

RESUMO

Unusually low genetic diversity can be a warning of an urgent need to mitigate causative anthropogenic activities. However, current low levels of genetic diversity in a population could also be due to natural historical events, including recent evolutionary divergence, or long-term persistence at a small population size. Here, we determine whether the relatively low genetic diversity of pygmy blue whales (Balaenoptera musculus brevicauda) in Australia is due to natural causes or overexploitation. We apply recently developed analytical approaches in the largest genetic dataset ever compiled to study blue whales (297 samples collected after whaling and representing lineages from Australia, Antarctica and Chile). We find that low levels of genetic diversity in Australia are due to a natural founder event from Antarctic blue whales (Balaenoptera musculus intermedia) that occurred around the Last Glacial Maximum, followed by evolutionary divergence. Historical climate change has therefore driven the evolution of blue whales into genetically, phenotypically and behaviourally distinct lineages that will likely be influenced by future climate change.


Assuntos
Balaenoptera/genética , Clima , Efeito Fundador , Variação Genética , Animais , Austrália , Conservação dos Recursos Naturais , Densidade Demográfica
6.
BMC Genet ; 13: 45, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22694765

RESUMO

BACKGROUND: When genetic structure is identified using mitochondrial DNA (mtDNA), but no structure is identified using biparentally-inherited nuclear DNA, the discordance is often attributed to differences in dispersal potential between the sexes. RESULTS: We sampled the intertidal rocky shore mussel Perna perna in a South African bay and along the nearby open coast, and sequenced maternally-inherited mtDNA (there is no evidence for paternally-inherited mtDNA in this species) and a biparentally-inherited marker. By treating males and females as different populations, we identified significant genetic structure on the basis of mtDNA data in the females only. CONCLUSIONS: This is the first study to report sex-specific differences in genetic structure based on matrilineally-inherited mtDNA in a passively dispersing species that lacks social structure or sexual dimorphism. The observed pattern most likely stems from females being more vulnerable to selection in habitats from which they did not originate, which also manifests itself in a male-biased sex ratio. Our results have three important implications for the interpretation of population genetic data. First, even when mtDNA is inherited exclusively in the female line, it also contains information about males. For that reason, using it to identify sex-specific differences in genetic structure by contrasting it with biparentally-inherited markers is problematic. Second, the fact that sex-specific differences were found in a passively dispersing species in which sex-biased dispersal is unlikely highlights the fact that significant genetic structure is not necessarily a function of low dispersal potential or physical barriers. Third, even though mtDNA is typically used to study historical demographic processes, it also contains information about contemporary processes. Higher survival rates of males in non-native habitats can erase the genetic structure present in their mothers within a single generation.


Assuntos
Bivalves/citologia , Bivalves/genética , Animais , Bivalves/fisiologia , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Masculino , Dados de Sequência Molecular , Caracteres Sexuais , África do Sul
7.
Sci Rep ; 12(1): 14810, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045215

RESUMO

A longstanding question in evolutionary biology is how natural selection and environmental pressures shape the mitochondrial genomic architectures of organisms. Mitochondria play a pivotal role in cellular respiration and aerobic metabolism, making their genomes functionally highly constrained. Evaluating selective pressures on mitochondrial genes can provide functional and ecological insights into the evolution of organisms. Collembola (springtails) are an ancient hexapod group that includes the oldest terrestrial arthropods in the fossil record, and that are closely associated with soil environments. Of interest is the diversity of habitat stratification preferences (life forms) exhibited by different species within the group. To understand whether signals of positive selection are linked to the evolution of life forms, we analysed 32 published Collembola mitogenomes in a phylomitogenomic framework. We found no evidence that signatures of selection are correlated with the evolution of novel life forms, but rather that mutations have accumulated as a function of time. Our results highlight the importance of nuclear-mitochondrial interactions in the evolution of collembolan life forms and that mitochondrial genomic data should be interpreted with caution, as complex selection signals may complicate evolutionary inferences.


Assuntos
Artrópodes , Genoma Mitocondrial , Animais , Artrópodes/genética , Artrópodes/metabolismo , Evolução Molecular , Fósseis , Genes Mitocondriais , Insetos/genética , Filogenia
8.
BMC Evol Biol ; 11: 176, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21693014

RESUMO

BACKGROUND: Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt Pyura stolonifera, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit. RESULTS: Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within Pyura stolonifera in the different coastal communities they dominate. CONCLUSIONS: This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.


Assuntos
Biodiversidade , Ecossistema , Espécies Introduzidas , Biologia Marinha , Urocordados/classificação , Animais , Evolução Biológica , Dados de Sequência Molecular , Filogenia , Urocordados/genética
9.
Mol Ecol ; 20(23): 5025-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22017655

RESUMO

Genetic divergence among populations of marine broadcast spawners in the absence of past geological barriers presents an intriguing challenge to understanding speciation in the sea. To determine how differences in life history affect genetic divergence and demographic histories across incomplete dispersal barriers, we conducted a comparative phylogeographic study of three intertidal limpets (Siphonaria spp.) represented on either side of a biogeographic disjunction separating tropical and subtropical marine provinces in southeastern Africa. Using a combination of mitochondrial and nuclear sequence data, we identified two distinct evolutionary lineages each in both Siphonaria concinna (a planktonic disperser) and S. nigerrima (a direct developer), and panmixia in a second planktonic disperser, S. capensis. Although phylogeographic breaks were present in two species, how these became established differed depending on their life histories. In the direct developer, lack of gene flow following divergence, and demographic expansion from a small initial size in the species' subtropical population, point to a single colonisation event. In contrast, the evolutionary lineages of the planktonic disperser split into two genetic lineages with much larger initial population sizes and southward gene flow continued at least periodically, indicating that divergence in this species may have been driven by a combination of reduced larval dispersal and divergent selection. These findings help explain why the presence or absence of phylogeographic breaks often appears to be independent of species' dispersal potential.


Assuntos
Evolução Biológica , Clima , Gastrópodes/genética , Fluxo Gênico , Filogeografia , África , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Genética Populacional , Haplótipos , Funções Verossimilhança , Densidade Demográfica , Análise de Sequência de DNA
10.
Ecol Evol ; 11(11): 6546-6557, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141239

RESUMO

Several studies have attempted to understand the origin and evolution of single-exon genes (SEGs) in eukaryotic organisms, including fishes, but few have examined the functional and evolutionary relationships between SEGs and multiple-exon gene (MEG) paralogs, in particular the conservation of promoter regions. Given that SEGs originate via the reverse transcription of mRNA from a "parental" MEGs, such comparisons may enable identifying evolutionarily-related SEG/MEG paralogs, which might fulfill equivalent physiological functions. Here, the relationship of SEG proportion with MEG count, gene density, intron count, and chromosome size was assessed for the genome of the European sea bass, Dicentrarchus labrax. Then, SEGs with an MEG parent were identified, and promoter sequences of SEG/MEG paralogs were compared, to identify highly conserved functional motifs. The results revealed a total count of 1,585 (8.3% of total genes) SEGs in the European sea bass genome, which was correlated with MEG count but not with gene density. The significant correlation of SEG content with the number of MEGs suggests that SEGs were continuously and independently generated over evolutionary time following species divergence through retrotranscription events, followed by tandem duplications. Functional annotation showed that the majority of SEGs are functional, as is evident from their expression in RNA-seq data used to support homology-based genome annotation. Differences in 5'UTR and 3'UTR lengths between SEG/MEG paralogs observed in this study may contribute to gene expression divergence between them and therefore lead to the emergence of new SEG functions. The comparison of nonsynonymous to synonymous changes (Ka/Ks) between SEG/MEG parents showed that 74 of them are under positive selection (Ka/Ks > 1; p = .0447). An additional fifteen SEGs with an MEG parent have a common promoter, which implies that they are under the influence of common regulatory networks.

11.
Sci Rep ; 11(1): 4205, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603090

RESUMO

Historical demographic events shape genetic diversity that remains evident in the genomes of contemporary populations. In the case of species that are of conservation concern, this information helps to unravel evolutionary histories that can be critical in guiding conservation efforts. The Knysna seahorse, Hippocampus capensis, is the world's most endangered seahorse species, and it presently survives in only three estuaries on the South African south coast. Factors that contributed to the species becoming endangered are unclear; additionally, the lack of information on whether the three populations should be managed separately because of potential long-term isolation hampers effective management efforts. In the present study, we reconstructed the seahorses' demographic history using a suite of microsatellite loci. We found that the largest population (Knysna Estuary) has colonised the other estuaries relatively recently (< 450 years ago), and that its population size is comparatively large and stable. Neither of the other two populations shows signs of long-term reductions in population size. The high conservation status of the species is thus a result of its limited range rather than historical population declines. Our findings indicate that the long-term survival of H. capensis depends primarily on the successful management of the Knysna population, although the other estuaries may serve as reservoirs of genetic diversity.


Assuntos
Smegmamorpha/genética , Animais , Evolução Biológica , Conservação dos Recursos Naturais/métodos , Demografia/métodos , Ecossistema , Espécies em Perigo de Extinção , Estuários , Variação Genética/genética , Repetições de Microssatélites/genética , Densidade Demográfica
12.
Mar Genomics ; 58: 100847, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33637426

RESUMO

Environmental gradients between marine biogeographical provinces separate distinct faunal communities. However, the absence of absolute dispersal barriers allows numerous species to occur on both sides of such boundaries. While the regional populations of such widespread species are often morphologically indistinguishable from each other, genetic evidence suggests that they represent unique ecotypes, and likely even cryptic species, that may be uniquely adapted to their local environment. Here, we explored genomic divergence in four sympatric southern African decapod crustaceans whose ranges span the boundary between the cool-temperate west coast (south-eastern Atlantic) and the warm-temperate south coast (south-western Indian Ocean) near the southern tip of the African continent. Using genome-wide data, we found that all four species comprise distinct west coast and south coast ecotypes, with molecular dating suggesting divergence during the Pleistocene. Transcriptomic data from the hepatopancreas of twelve specimens of one of these species, the mudprawn Upogebia africana, which were exposed to either 10 °C or 20 °C, showed a clear difference in gene expression profiles between the west- and south coast ecotypes. This difference was particularly clear at 10 °C, where individuals from the south coast experienced a 'transcriptomic shock'. This low temperature is more typical of the west coast during upwelling events, and the physiological stress experienced by the south coast ecotype under such conditions may explain its absence from that coastline. Our results shed new light on the processes involved in driving genomic divergence and incipient speciation along coastlines with porous dispersal barriers.


Assuntos
Decápodes/genética , Ecótipo , Expressão Gênica , Variação Genética , Genoma , Animais , Organismos Aquáticos/genética , Oceanos e Mares , Água do Mar/química , África do Sul , Temperatura
13.
Mitochondrial DNA B Resour ; 6(2): 608-610, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33644386

RESUMO

Spinicaudatan clam shrimp are a widespread and diverse group of branchiopod crustaceans, yet few mitochondrial genomes have been published for this taxonomic group. Here, we present the mitogenome of Leptestheria brevirostris from a rock pool ecosystem in Botswana. Massively parallel sequencing of a single specimen facilitated the reconstruction of the species' 15,579 bp circularized mitogenome. The reconstructed phylogenetic tree confirms that L. brevirostris forms a monophyletic group with other diplostracan branchiopods, and that these are the sister taxon to Notostraca. The mitogenome reconstructed here is the first to be reported from a leptestherid clam shrimp.

14.
Genes (Basel) ; 12(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806647

RESUMO

During austral winter, the southern and eastern coastlines of South Africa witness one of the largest animal migrations on the planet, the KwaZulu-Natal sardine run. Hundreds of millions of temperate sardines, Sardinops sagax, form large shoals that migrate north-east towards the subtropical Indian Ocean. Recent studies have highlighted the role that genetic and environmental factors play in sardine run formation. In the present study, we used massively parallel sequencing to assemble and annotate the first reference transcriptome from the liver cells of South African sardines, and to investigate the functional content and transcriptomic diversity. A total of 1,310,530 transcripts with an N50 of 1578 bp were assembled de novo. Several genes and core biochemical pathways that modulate energy production, energy storage, digestion, secretory processes, immune responses, signaling, regulatory processes, and detoxification were identified. The functional content of the liver transcriptome from six individuals that participated in the 2019 sardine run demonstrated heterogeneous levels of variation. Data presented in the current study provide new insights into the complex function of the liver transcriptome in South African sardines.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , Perfilação da Expressão Gênica/veterinária , Fígado/química , Migração Animal , Animais , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de RNA , África do Sul
15.
Sci Adv ; 7(38): eabf4514, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524856

RESUMO

The KwaZulu-Natal sardine run, popularly known as the "greatest shoal on Earth," is a mass migration of South African sardines from their temperate core range into the subtropical Indian Ocean. It has been suggested that this represents the spawning migration of a distinct subtropical stock. Using genomic and transcriptomic data from sardines collected around the South African coast, we identified two stocks, one cool temperate (Atlantic) and the other warm temperate (Indian Ocean). Unexpectedly, we found that sardines participating in the sardine run are primarily of Atlantic origin and thus prefer colder water. These sardines separate from the warm-temperate stock and move into temporarily favorable Indian Ocean habitat during brief cold-water upwelling periods. Once the upwelling ends, they find themselves trapped in physiologically challenging subtropical habitat and subject to intense predation pressure. This makes the sardine run a rare example of a mass migration that has no apparent fitness benefits.

16.
F1000Res ; 9: 339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32934803

RESUMO

Background: Mitochondrial DNA (mtDNA) has long been used to date historical demographic events. The idea that it is useful for molecular dating rests on the premise that its evolution is neutral. Even though this idea has long been challenged, the evidence against clock-like evolution of mtDNA is often ignored. Here, we present a particularly clear and simple example to illustrate the implications of violations of the assumption of selective neutrality. Methods: DNA sequences were generated for the mtDNA COI gene and the nuclear 28S rRNA of two closely related rocky shore snails, and species-level variation was compared. To our knowledge, this is the first study to use nuclear rRNA at this taxonomic level, presumably because this marker is assumed to evolve so slowly that it is only suitable for phylogenetics.   Results: Even though high inter-specific divergence reflected the faster evolutionary rate of COI, intraspecific genetic variation was similar for both markers. As a result, estimates of population expansion times based on mismatch distributions differed between the two markers by millions of years. Conclusions: Assuming that 28S evolves effectively clock-like, these findings can be explained by variation-reducing purifying selection in mtDNA at the species level, and an elevated divergence rate caused by diversifying selection between the two species. Although these two selective forces together make mtDNA suitable as a marker for species identifications by means of DNA barcoding because they create a 'barcoding gap', estimates of demographic change based on this marker can be expected to be highly unreliable. Our study contributes to the growing evidence that the utility of mtDNA sequence data beyond DNA barcoding is limited.


Assuntos
Evolução Molecular , Genes Mitocondriais , Variação Genética , RNA Ribossômico 28S/genética , Caramujos/genética , Animais , Filogenia , Seleção Genética , Análise de Sequência de DNA , Caramujos/classificação , Especificidade da Espécie
17.
Sci Rep ; 10(1): 604, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953497

RESUMO

The 'Abundant-Centre Hypothesis' is a well-established but controversial hypothesis stating that the abundance of a species is highest at the centre of its range and decreases towards the edges, where conditions are unfavourable. As genetic diversity depends on population size, edge populations are expected to show lower intra-population genetic diversity than core populations, while showing high inter-population genetic divergence. Here, the genetic implications of the Abundant-Centre Hypothesis were tested on two coastal mussels from South Africa that disperse by means of planktonic larvae, the native Perna perna and the invasive Mytilus galloprovincialis. Genetic structure was found within P. perna, which, together with evidence from Lagrangian particle simulations, points to significant reductions in gene flow between sites. Despite this, the expected diversity pattern between centre and edge populations was not found for either species. We conclude that the genetic predictions of the Abundant-Centre Hypothesis are unlikely to be met by high-dispersal species with large population sizes, and may only become evident in species with much lower levels of connectivity.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Repetições de Microssatélites , Mytilus/genética , Perna (Organismo)/genética , Análise de Sequência de DNA/métodos , Animais , Ecossistema , Fluxo Gênico , Deriva Genética , Genética Populacional , Técnicas de Genotipagem , Filogenia , Densidade Demográfica , África do Sul
18.
Zootaxa ; 4896(3): zootaxa.4896.3.4, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33756859

RESUMO

Sixteen species of Latrunculiidae Topsent, 1922, belonging to the genera Latrunculia du Bocage, 1869, Strongylodesma Lévi, 1969, Cyclacanthia Samaai Kelly, 2004, Samaai Kelly, 2002, are currently known from the temperate waters of South Africa. Extensive new sponge collections from the Amathole region of South Africa revealed the existence of three new species of Tsitsikamma, T. amatholensis sp. nov., T. madiba sp. nov., and T. beukesi sp. nov., and a new species of the endemic South African genus Cyclacanthia, C. rethahofmeyri sp. nov. With the recent addition of two new species of Tsitsikamma from Algoa Bay and Tsitsikamma National Park (T. michaeli Parker-Nance, 2019; T. nguni Parker-Nance, 2019) the total number of known South African Latrunculiidae is now 20 species in four genera. Here we propose two new subgenera of Tsitsikamma, Tsitsikamma Samaai Kelly, 2002 and Clavicaulis subgen. nov., based on the morphological groups "favus" and "pedunculata" hypothesized by Parker-Nance et al. (2019). Species in the nominotypical subgenus Tsitsikamma, containing the type species, are thick encrusting to hemispherical with a rigid honeycombed choanosome, while species in the new subgenus Clavicaulis subgen. nov. have a purse or sac-like morphology with little choanosomal structure. Despite the obvious species-level differences in morphology, multivariate analysis based on spicule measurements (anisostyle length, discorhabd length, shaft and whorl length) was not able to distinguish between the proposed Tsitsikamma species, but separated known species T. favus Samaai Kelly, 2002, T. pedunculata Samaai Kelly, 2003, and T. scurra Samaai Kelly, 2003, from each other. Similarly, DNA barcoding of the mitochondrial COI  and the nuclear ITS of Tsitsikamma specimens failed to clearly differentiate between species, but was able to differentiate sister taxon relationships within the Latrunculiidae.


Assuntos
Poríferos , África Austral , Animais , DNA
19.
Mitochondrial DNA B Resour ; 5(1): 623-625, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33366675

RESUMO

Fairy shrimps (Anostraca) constitute an important component of seasonally aquatic habitats, but few complete mitochondrial genomes have been published for this group. Here, we report the mitogenome of a common southern African species, Streptocephalus cafer, from Botswana (accession number: MN720104). Low-coverage shotgun sequencing recovered two contigs 15653 bp and 1347 bp in length that are separated by a repetitive region of unknown length within the non-coding control region. The mitogenome's GC content is 31.80%. Phylogenetic analysis using protein-coding genes confirms the sister taxon relationship of S. cafer with the only other congener whose mitogenome has been reconstructed to date, the Asian S. sirindhornae.

20.
Mitochondrial DNA B Resour ; 5(2): 1238-1240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33366925

RESUMO

Clam shrimps (Spinicaudata) are a widespread and diverse crustacean group that frequent temporary aquatic habitats, but few complete mitochondrial genomes have been published for this group. Here, we report the mitogenome of an undescribed Gondwanalimnadia species from Botswana. Raw sequences were assembled into a single circular genome with a total length of 15,663 bp. Thirteen protein-coding genes, 22 tRNAs, and 2 rRNAs were identified using the MITOS pipeline. The mitogenome's GC content is 33.52%. Phylogenetic analysis using protein-coding genes confirmed that Gondwanalimnadia sp. is closely related to another member of the Limnadiidae, Limnadia lenticularis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa