Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J R Soc Interface ; 16(159): 20190553, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31662071

RESUMO

Identifying and explaining the structure of complex networks at different scales has become an important problem across disciplines. At the mesoscale, modular architecture has attracted most of the attention. At the macroscale, other arrangements-e.g. nestedness or core-periphery-have been studied in parallel, but to a much lesser extent. However, empirical evidence increasingly suggests that characterizing a network with a unique pattern typology may be too simplistic, since a system can integrate properties from distinct organizations at different scales. Here, we explore the relationship between some of these different organizational patterns: two at the mesoscale (modularity and in-block nestedness); and one at the macroscale (nestedness). We show experimentally and analytically that nestedness imposes bounds to modularity, with exact analytical results in idealized scenarios. Specifically, we show that nestedness and modularity are interdependent. Furthermore, we analytically evidence that in-block nestedness provides a natural combination between nested and modular networks, taking structural properties of both. Far from a mere theoretical exercise, understanding the boundaries that discriminate each architecture is fundamental, to the extent that modularity and nestedness are known to place heavy dynamical effects on processes, such as species abundances and stability in ecology.


Assuntos
Ecossistema , Modelos Biológicos
2.
Chaos ; 18(3): 037125, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19045499

RESUMO

Two replicas of spatially extended chaotic systems synchronize to a common spatio-temporal chaotic state when coupled above a critical strength. As a prototype of each single spatio-temporal chaotic system a lattice of maps interacting via power-law coupling is considered. Furthermore, each unit in the one-dimensional chain is linked to the corresponding one in the replica via a local coupling. The synchronization transition is studied as a nonequilibrium phase transition, and its critical properties are analyzed at varying the spatial interaction range as well as the nonlinearity of the dynamical units composing each system. In particular, continuous and discontinuous local maps are considered. In both cases the transitions are of the second order with critical indices varying with the exponent characterizing the interaction range. For discontinuous maps it is numerically shown that the transition belongs to the anomalous directed percolation (ADP) family of universality classes, previously identified for Levy-flight spreading of epidemic processes. For continuous maps, the critical exponents are different from those characterizing ADP, but apart from the nearest-neighbor case, the identification of the corresponding universality classes remains an open problem. Finally, to test the influence of deterministic correlations for the studied synchronization transitions, the chaotic dynamical evolutions are substituted by suitable stochastic models. In this framework and for the discontinuous case, it is possible to derive an effective Langevin description that corresponds to that proposed for ADP.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Dinâmica não Linear , Oscilometria/métodos , Transmissão Sináptica/fisiologia , Animais , Simulação por Computador , Retroalimentação/fisiologia , Humanos
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(1 Pt 2): 016203, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17358231

RESUMO

Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system response (firing). It has been reported that in coupled excitable identical systems noise may induce the simultaneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 2): 046220, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17155166

RESUMO

We study the control of oscillations in a system of inhibitory coupled noisy excitable and oscillatory units. Using dynamical properties of inhibition, we find regimes when the oscillations can be suppressed but the information signal of a certain frequency can be transmitted through the system. The mechanism of this phenomenon is a resonant interplay of noise and the transmission signal provided by certain value of inhibitory coupling. Analyzing a system of three or four oscillators representing neural clusters, we show that this suppression can be effectively controlled by coupling and noise amplitudes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa