RESUMO
CD40/CD40-ligand (CD40L) signalling is a key stimulatory pathway which triggers the tryptophan (Trp) catabolizing enzyme IDO in dendritic cells and is immunosuppressive in cancer. We reported IDO-induced Trp catabolism results in a T helper type 17 (Th17)/regulatory T cell (Treg ) imbalance, and favours microbial translocation in HIV chronic infection. Here we assessed the link between sCD40L, Tregs and IDO activity in HIV-infected patients with different clinical outcomes. Plasmatic sCD40L and inflammatory cytokines were assessed in anti-retroviral therapy (ART)-naive, ART-successfully treated (ST), elite controllers (EC) and healthy subjects (HS). Plasma levels of Trp and its metabolite Kynurenine (Kyn) were measured by isotope dilution tandem mass spectrometry and sCD14 was assessed by enzyme-linked immunosorbent assay (ELISA). IDO-mRNA expression was quantified by reverse transcription-polymerase chain reaction (RT-PCR). The in-vitro functional assay of sCD40L on Treg induction and T cell activation were assessed on peripheral blood mononuclear cells (PBMCs) from HS. sCD40L levels in ART-naive subjects were significantly higher compared to ST and HS, whereas EC showed only a minor increase. In ART-naive alone, sCD40L was correlated with T cell activation, IDO-mRNA expression and CD4 T cell depletion but not with viral load. sCD40L was correlated positively with IDO enzymatic activity (Kyn/Trp ratio), Treg frequency, plasma sCD14 and inflammatory soluble factors in all HIV-infected patients. In-vitro functional sCD40L stimulation induced Treg expansion and favoured Treg differentiation by reducing central memory and increasing terminal effector Treg proportion. sCD40L also increased T cell activation measured by co-expression of CD38/human leucocyte antigen D-related (HLA-DR). These results indicate that elevated sCD40L induces immunosuppression in HIV infection by mediating IDO-induced Trp catabolism and Treg expansion.
Assuntos
Ligante de CD40/imunologia , Infecções por HIV/imunologia , Imunossupressores/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Feminino , Humanos , Tolerância Imunológica , Cinurenina/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Triptofano/imunologia , Adulto JovemRESUMO
Innovative therapeutic strategies are needed to diminish the impact of harmful immunosuppression in transplantation. Dendritic cell (DC)-based therapy is a promising approach for induction of antigen-specific tolerance. Using a heart allograft model in rats, we analyzed the immunoregulatory mechanisms by which injection of autologous tolerogenic DCs (ATDCs) plus suboptimal immunosuppression promotes indefinite graft survival. Surprisingly, we determined that Interferon-gamma (IFNG), a cytokine expected to be propathogenic, was threefold increased in the spleen of tolerant rats. Importantly, its blockade led to allograft rejection [Mean Survival Time (MST) = 25.6 ± 4 days], showing that IFNG plays a critical role in immunoregulatory mechanisms triggered by ATDCs. IFNG was expressed by TCRαß(+) CD3(+) CD4(-) CD8(-) NKRP1(-) cells (double negative T cells, DNT), which accumulated in the spleen of tolerant rats. Interestingly, ATDCs specifically induced IFNG production by DNT cells. ATDCs expressed the cytokinic chain Epstein-Barr virus-induced gene 3 (EBI3), an IL-12 family member. EBI3 blockade or knock-down through siRNA completely abolished IFNG expression in DNT cells. Finally, EBI3 blockade in vivo led to allograft rejection (MST = 36.8 ± 19.7 days), demonstrating for the first time a role for EBI3 in transplantation tolerance. Taken together our results have important implications in the rationalization of DC-based therapy in transplantation as well as in the patient immunomonitoring follow-up.
Assuntos
Transplante de Células , Células Dendríticas/citologia , Herpesvirus Humano 4/metabolismo , Interferon gama/metabolismo , Proteínas Virais/metabolismo , Animais , Teste de Cultura Mista de Linfócitos , Microscopia Confocal , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transplante HomólogoRESUMO
Numerous reports have highlighted the central role of regulatory T cells in long-term allograft tolerance, but few studies have investigated the B-cell aspect. We analyzed the B-cell response in a rat model of long-term cardiac allograft tolerance induced by a short-term immunosuppression. We observed that tolerated allografts are infiltrated by numerous B cells organized in germinal centers that are strongly regulated in their IgG alloantibody response. Moreover, alloantibodies from tolerant recipients exhibit a deviation toward a Th2 isotype and do not activate in vitro donor-type endothelial cells in a pro-inflammatory way but maintained expression of cytoprotective molecules. Interestingly, this inhibition of the B-cell response is characterized by the progressive accumulation in the graft and in the blood of B cells blocked at the IgM to IgG switch recombination process and overexpressing BANK-1 and the inhibitory receptor Fcgr2b. Importantly, B cells from tolerant recipients are able to transfer allograft tolerance. Taken together, these results demonstrate a strong regulation of the alloantibody response in tolerant recipients and the accumulation of B cells exhibiting an inhibited and regulatory profile. These mechanisms of regulation of the B-cell response could be instrumental to develop new strategies to promote tolerance.
Assuntos
Linfócitos B/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Coração/imunologia , Tolerância Imunológica/imunologia , Isoanticorpos/imunologia , Tolerância ao Transplante/imunologia , Animais , Western Blotting , Citometria de Fluxo , Técnicas Imunoenzimáticas , Região de Troca de Imunoglobulinas/genética , Masculino , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Transplante HomólogoRESUMO
Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.
Assuntos
Ácidos Graxos Ômega-3 , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal , Encéfalo , Feminino , Humanos , Inflamação , Microglia , GravidezRESUMO
Clinical translation of dendritic cell (DC)-based cell therapy requires preclinical studies in nonhuman primates (NHPs). The aim of this work was to establish the in vitro conditions for generation of NHP tolerogenic DCs (Tol-DCs), as well as to analyze the molecular mechanisms by which these cells could control an immune response. Two populations of NHP bone marrow-derived DCs (BMDCs) were obtained: adherent and nonadherent. Although both populations displayed a quite similar phenotype, they were very different functionally. We characterized the adherent BMDCs as Tol-DCs that were poor stimulators of T cells and actively inhibited T-cell proliferation, whereas the nonadherent population displayed immunogenic properties in vitro. Interestingly, the anti-inflammatory and immunosuppressive enzyme heme oxygenase-1 (HO-1) was up-regulated in Tol-DCs, compared to the immunogenic BMDCs. We demonstrated that HO-1 mediates the immunosuppressive properties of Tol-DCs in vitro (in NHPs and rats) and that HO-1 is involved in the in vivo tolerogenic effect of Tol-DCs in a rat model of allotransplantation. In conclusion, here we characterized the in vitro generation of NHP Tol-DCs. Furthermore, we showed for the first time that HO-1 plays a role in the active inhibition of T-cell responses by rat and NHP Tol-DCs.
Assuntos
Células Dendríticas/imunologia , Heme Oxigenase-1/genética , Tolerância Imunológica/imunologia , Linfócitos T/imunologia , Animais , Células da Medula Óssea , Adesão Celular , Transplante de Células , Células Cultivadas , Células Dendríticas/enzimologia , Células Dendríticas/transplante , Primatas , Ratos , Transplante Homólogo , Regulação para Cima/genéticaRESUMO
The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4+). We present here the annotated DNA sequence of the alpha-proteobacterium Sinorhizobium meliloti, the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be useful in understanding the dynamics of interkingdom associations and of life in soil environments.
Assuntos
Genoma Bacteriano , Análise de Sequência de DNA , Sinorhizobium meliloti/genética , Simbiose/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Cromossomos Bacterianos/genética , Biologia Computacional , Elementos de DNA Transponíveis , Metabolismo Energético/genética , Evolução Molecular , Duplicação Gênica , Genes Bacterianos , Genes Essenciais , Genes Reguladores , Medicago sativa/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Plasmídeos , Polissacarídeos Bacterianos/genética , Replicon , Rhizobiaceae/genética , Sinorhizobium meliloti/fisiologiaRESUMO
Donor-specific tolerance to heart allografts in the rat can be achieved by donor-specific blood transfusions (DST) before transplantation. We have previously reported that this tolerance is associated with strong leukocyte infiltration, and that host CD8(+) T cells and TGFbeta are required. In order to identify new molecules involved in the induction phase of tolerance, we compared tolerated and rejected heart allografts (suppressive subtractive hybridization) 5 days after transplantation. We identified overexpression of Follistatin-like 1 (FSTL1) transcript in tolerated allografts compared to rejected allografts or syngeneic grafts. We show that FSTL1 is overexpressed during both the induction and maintenance phase of tolerance, and appears to be specific to the tolerance model induced by DST. Analysis of graft-infiltrating cells revealed predominant expression of FSTL1 in CD8(+) T cells from tolerated grafts, and depletion of these cells prior to transplantation abrogated FSTL1 expression and heart allograft survival. Moreover, overexpression of FSTL1 by adenovirus gene transfer in vivo significantly prolonged allograft survival in association with inhibition of the proinflammatory cytokines, IL6, IL17 A and IFNgamma. Taken together, these results suggest that FSTL1 could be an active component of the mechanisms mediating heart allograft tolerance.
Assuntos
Proteínas Relacionadas à Folistatina/biossíntese , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Técnicas de Transferência de Genes , Transplante de Coração , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Transplante HomólogoRESUMO
A facile and eco-friendly method was developed to prepare a microporous CuO@Ag0 core-shell with high catalytic and antibacterial activities. Scanning and transmission electron microscopy revealed a preponderance of nearly spherical 50 nm particles with slight structure compaction. Comparison of the hysteresis loops confirmed the structure compaction after AgNP incorporation, and a significant decrease of the specific surface area from 55.31 m2 g-1 for CuO to 8.03 m2 g-1 for CuO@Ag0 was noticed. A kinetic study of 4-nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) with sodium borohydride revealed a first order reaction that produces total conversion in less than 18 minutes. CuO@Ag0 also exhibited appreciable antibacterial activity against Staphylococcus aureus. The antibacterial effects were found to strongly depend on the size, contact surface, morphology and chemical composition of the catalyst particles. The addition of Ag0-NPs produced more reactive oxygen species in the bacteria medium. These results open promising prospects for its potential applications as a low cost catalyst in wastewater treatment and antibacterial agent in cosmetics.
RESUMO
MOTIVATION: Searching RNA gene occurrences in genomic sequences is a task whose importance has been renewed by the recent discovery of numerous functional RNA, often interacting with other ligands. Even if several programs exist for RNA motif search, none exists that can represent and solve the problem of searching for occurrences of RNA motifs in interaction with other molecules. RESULTS: We present a constraint network formulation of this problem. RNA are represented as structured motifs that can occur on more than one sequence and which are related together by possible hybridization. The implemented tool MilPat is used to search for several sRNA families in genomic sequences. Results show that MilPat allows to efficiently search for interacting motifs in large genomic sequences and offers a simple and extensible framework to solve such problems. New and known sRNA are identified as H/ACA candidates in Methanocaldococcus jannaschii. AVAILABILITY: http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl.
Assuntos
Algoritmos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Inteligência Artificial , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico/métodos , Dados de Sequência Molecular , Reconhecimento Automatizado de Padrão , Ligação Proteica , Alinhamento de Sequência/métodosRESUMO
Prevention of bacterial adhesion and biofilm formation on the surfaces of materials is a topic of major medical and societal importance. Various synthetic approaches based on immobilization or release of bactericidal substances such as metal derivatives, polyammonium salts and antibiotics were extensively explored to produce antibacterial coatings. Although providing encouraging results, these approaches suffer from the use of active agents which may be associated with side-effects such as cytotoxicity, hypersensibility, inflammatory responses or the progressive alarming phenomenon of antibiotic resistance. In addition to these synthetic approaches, living organisms, e.g. animals and plants, have developed fascinating strategies over millions of years to prevent efficiently the colonization of their surfaces by pathogens. These strategies have been recently mimicked to create a new generation of bio-inspired biofilm-resistant surfaces. In this review, we discuss some of these bio-inspired methods devoted to the development of antibiofilm surfaces. We describe the elaboration of antibacterial coatings based on natural bactericidal substances produced by living organisms such as antimicrobial peptides, bacteriolytic enzymes and essential oils. We discuss also the development of layers mimicking algae surfaces and based on anti-quorum-sensing molecules which affect cell-to-cell communication. Finally, we report on very recent strategies directly inspired from marine animal life and based on surface microstructuring.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de SuperfícieRESUMO
Regulatory T cells have been described to specifically accumulate at the site of regulation together with effector T cells and antigen-presenting cells, establishing a state of local immune privilege. However the mechanisms of this interplay remain to be defined. We previously demonstrated, in a fully MHC mismatched rat cardiac allograft combination, that a short-term treatment with a deoxyspergualine analogue, LF15-0195, induces long-term allograft tolerance with a specific expansion of regulatory CD4+CD25+T cells that accumulate within the graft. In this study, we show that following transfer of regulatory CD4+T cells to a secondary irradiated recipient, regulatory CD25+Foxp3+ and CD25+Foxp3(-) CD4+T cells accumulate at the graft site and induce graft endothelial cell expression of Indoleamine 2, 3-dioxygenase (IDO) by an IFNgamma-dependent mechanism. Moreover, in vivo transfer of tolerance can be abrogated by blocking IFNgamma or IDO, and anti-IFNgamma reduces the survival/expansion of alloantigen-induced regulatory Foxp3+CD4+T cells. Together, our results demonstrate interrelated mechanisms between regulatory CD4+CD25+T cells and the graft endothelial cells in this local immune privilege, and a key role for IFNgamma and IDO in this process.
Assuntos
Antígenos CD4/imunologia , Transplante de Coração/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Interferon gama/fisiologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T/imunologia , Transplante Homólogo/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Técnicas de Cocultura , Endotélio Vascular/citologia , Indução Enzimática , Fatores de Transcrição Forkhead/fisiologia , Guanidinas/farmacologia , Transplante de Coração/patologia , Imuno-Histoquímica , Imunossupressores/farmacologia , Teste de Cultura Mista de Linfócitos , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/citologiaRESUMO
SUMMARY: MIAH is a WWW server for the automatic alignment of new eukaryotic SSU rRNA sequences to an existing alignment of 1500 sequences. AVAILABILITY: http://chah.ucc.ie/MIAH Contact :
Assuntos
RNA Ribossômico/análise , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Automação , Células EucarióticasRESUMO
With ESSA, we propose an approach of RNA secondary structure analysis based on extensive viewing within a friendly graphical interface. This computer program is organized around the display of folding models produced by two complementary methods suitable to draw long RNA molecules. Any feature of interest can be managed directly on the display and highlighted by a rich combination of colours and symbols with emphasis given to structural probe accessibilities. ESSA also includes a word searching procedure allowing easy visual identification of structural features even complex and degenerated. Analysis functions make it possible to calculate the thermodynamic stability of any part of a folding using several models and compare homologous aligned RNA both in primary and secondary structure. The predictive capacities of ESSA which brings together the experimental, thermodynamic and comparative methods, are increased by coupling it with a program dedicated to RNA folding prediction based on constraints management and propagation. The potentialities of ESSA are illustrated by the identification of a possible tertiary motif in the LSU rRNA and the visualization of a pseudoknot in S15 mRNA.
Assuntos
Conformação de Ácido Nucleico , RNA/química , Software , Composição de Bases , Sequência de Bases , Sequência Consenso , Bases de Dados Factuais , Estabilidade de Medicamentos , Dados de Sequência Molecular , RNA Ribossômico/química , TermodinâmicaRESUMO
Ralstonia solanacearum is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. It is a model system for the dissection of molecular determinants governing pathogenicity. We present here the complete genome sequence and its analysis of strain GMI1000. The 5.8-megabase (Mb) genome is organized into two replicons: a 3.7-Mb chromosome and a 2.1-Mb megaplasmid. Both replicons have a mosaic structure providing evidence for the acquisition of genes through horizontal gene transfer. Regions containing genetically mobile elements associated with the percentage of G+C bias may have an important function in genome evolution. The genome encodes many proteins potentially associated with a role in pathogenicity. In particular, many putative attachment factors were identified. The complete repertoire of type III secreted effector proteins can be studied. Over 40 candidates were identified. Comparison with other genomes suggests that bacterial plant pathogens and animal pathogens harbour distinct arrays of specialized type III-dependent effectors.
Assuntos
Bacilos e Cocos Aeróbios Gram-Negativos/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Genoma Bacteriano , Genômica , Bacilos e Cocos Aeróbios Gram-Negativos/patogenicidade , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Virulência/genéticaRESUMO
Sinorhizobium meliloti is an alpha-proteobacterium that forms agronomically important N(2)-fixing root nodules in legumes. We report here the complete sequence of the largest constituent of its genome, a 62.7% GC-rich 3,654,135-bp circular chromosome. Annotation allowed assignment of a function to 59% of the 3,341 predicted protein-coding ORFs, the rest exhibiting partial, weak, or no similarity with any known sequence. Unexpectedly, the level of reiteration within this replicon is low, with only two genes duplicated with more than 90% nucleotide sequence identity, transposon elements accounting for 2.2% of the sequence, and a few hundred short repeated palindromic motifs (RIME1, RIME2, and C) widespread over the chromosome. Three regions with a significantly lower GC content are most likely of external origin. Detailed annotation revealed that this replicon contains all housekeeping genes except two essential genes that are located on pSymB. Amino acid/peptide transport and degradation and sugar metabolism appear as two major features of the S. meliloti chromosome. The presence in this replicon of a large number of nucleotide cyclases with a peculiar structure, as well as of genes homologous to virulence determinants of animal and plant pathogens, opens perspectives in the study of this bacterium both as a free-living soil microorganism and as a plant symbiont.