Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 81(5): 573-584, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32173897

RESUMO

Some novel non-ulcerogenic N-substitutedphenyl-6-oxo-3-phenylpyridazines as COX-2 inhibitors have been developed (Supplementary material Appendix 1). The novel aldehyde 3 was prepared by reacting 6-phenylpyridazin-3(2H)-one with 4-fluorobenzaldehyde. The aldehyde 3 was reacted with different hydrazines and thiazolidin-4-ones to obtain the novel N-substitutedphenyl-6-oxo-3-phenylpyridazine derivatives. These were assessed for their anti-inflammatory potential and gastric ulcerogenic effects. The molecular docking investigations were also undertaken. The spectroscopic data were coherent with the allocated structures of the compounds. The compounds 4a (IC50 = 17.45 nm; p < .05), 4b (IC50 = 17.40 nm; p < .05), 5a (IC50 = 16.76 nm; p < .05), and 10 (IC50 = 17.15 nm; p < .05) displayed better COX-2 inhibitory activity than celecoxib (IC50 = 17.79 nm; p < .05). These findings were consistent with the molecular docking investigations of 4a, 4b, 5a, and 10. The in vivo anti-inflammatory profile of 4a, 4b, 5a, and 10 was also superior to celecoxib and indomethacin. The compounds 4b, 5a, and 10 revealed no gastric ulcerogenic effects, wherein the compound 4a produced almost negligible gastric ulcerogenic effects than celecoxib and indomethacin. The compounds 4a, 4b, 5a, and 10 have been postulated as promising non-ulcerogenic COX-2 inhibitors.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Piridazinas , Animais , Celecoxib/efeitos adversos , Celecoxib/uso terapêutico , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Edema/tratamento farmacológico , Feminino , Indometacina/efeitos adversos , Indometacina/uso terapêutico , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Piridazinas/efeitos adversos , Piridazinas/síntese química , Piridazinas/química , Piridazinas/uso terapêutico , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Relação Estrutura-Atividade
2.
J Infect Public Health ; 16(6): 928-937, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086552

RESUMO

The unmet medical need for drug-resistant tuberculosis (DRTB) is a significant concern. Accordingly, identifying new drug targets for tuberculosis (TB) treatment and developing new therapies based on these drug targets is one of the strategies to tackle DRTB. QcrB is an innovative drug target to create treatments for DRTB. This article highlights QcrB inhibitors and their therapeutic compositions for treating TB. The literature for this article was gathered from PubMed and free patent databases utilizing different keywords related to QcrB inhibitor-based inventions. The data was collected from the conceptualization of telacebec (2010) QcrB to December 2022. A little interesting and encouraging research has been performed on QcrB inhibitors. Telacebec and TB47 are established QcrB inhibitors in the clinical trial. The inventive QcrB inhibitor-based drug combinations can potentially handle DRTB and reduce the TB therapy duration. The authors anticipate great opportunities in fostering QcrB inhibitor-based patentable pharmaceutical inventions against TB. Drug repurposing can be a promising strategy to get safe and effective QcrB inhibitors. However, developing drug resistance, drug tolerance, and selectivity of QcrB inhibitors for Mtb will be the main challenges in developing effective QcrB inhibitors. In conclusion, QcrB is a promising drug target for developing effective treatments for active, latent, and drug-resistant TB. Many inventive and patentable combinations and compositions of QcrB inhibitors with other anti-TB drugs are anticipated as future treatments for TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa