Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(5): 183, 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37032362

RESUMO

The filamentous fungus Aspergillus niger is widely exploited as an industrial workhorse for producing enzymes and organic acids. So far, different genetic tools, including CRISPR/Cas9 genome editing strategies, have been developed for the engineering of A. niger. However, these tools usually require a suitable method for gene transfer into the fungal genome, like protoplast-mediated transformation (PMT) or Agrobacterium tumefaciens-mediated transformation (ATMT). Compared to PMT, ATMT is considered more advantageous because fungal spores can be used directly for genetic transformation instead of protoplasts. Although ATMT has been applied in many filamentous fungi, it remains less effective in A. niger. In the present study, we deleted the hisB gene and established an ATMT system for A. niger based on the histidine auxotrophic mechanism. Our results revealed that the ATMT system could achieve 300 transformants per 107 fungal spores under optimal transformation conditions. The ATMT efficiency in this work is 5 - 60 times higher than those of the previous ATMT studies in A. niger. The ATMT system was successfully applied to express the DsRed fluorescent protein-encoding gene from the Discosoma coral in A. niger. Furthermore, we showed that the ATMT system was efficient for gene targeting in A. niger. The deletion efficiency of the laeA regulatory gene using hisB as a selectable marker could reach 68 - 85% in A. niger strains. The ATMT system constructed in our work represents a promising genetic tool for heterologous expression and gene targeting in the industrially important fungus A. niger.


Assuntos
Agrobacterium tumefaciens , Aspergillus niger , Aspergillus niger/genética , Transformação Genética , Agrobacterium tumefaciens/genética , Genoma Fúngico
2.
Biotechnol Lett ; 45(5-6): 689-702, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071381

RESUMO

OBJECTIVES: This work aimed to construct a versatile, effective, and food-grade Agrobacterium tumefaciens-mediated transformation (ATMT) system for recombinant expression in the filamentous fungus Penicillium rubens (also known as Pencillium chrysogenum). RESULTS: In this study, the wild-type P. chrysogenum VTCC 31172 strain was re-classified as P. rubens by a multilocus sequencing analysis. Further, the pyrG gene required for uridine/uracil biosynthesis was successfully deleted in the VTCC 31172 strain by homologous recombination to generate a stable uridine/uracil auxotrophic mutant (ΔpyrG). The growth of the P. rubens ΔpyrG strain could be restored by uridine/uracil supplementation, and a new ATMT system based on the uridine/uracil auxotrophic mechanism was established for this strain. The optimal ATMT efficiency could reach 1750 transformants for 106 spores (equivalent to 0.18%). In addition, supplementation of uridine/uracil at the concentrations of 0.005-0.02% during the co-cultivation process significantly promoted transformation efficiency. Especially, we demonstrated that the pyrG marker and the amyB promoter from the koji mold Aspergillus oryzae were fully functional in P. rubens ΔpyrG. Expression of the DsRed reporter gene under the regulation of the A. oryzae amyB promoter lighted up the mycelium of P. rubens with a robust red signal under fluorescence microscopy. Furthermore, genomic integration of multiple copies of the Aspergillus fumigatus phyA gene under the control of the amyB promoter significantly enhanced phytase activity in P. rubens. CONCLUSIONS: The ATMT system developed in our work provides a safe genetic platform for producing recombinant products in P. rubens without using drug resistance markers.


Assuntos
Penicillium , Penicillium/genética , Penicillium/metabolismo , Agrobacterium tumefaciens/genética , Uracila/metabolismo , Uridina , Transformação Genética
3.
World J Microbiol Biotechnol ; 37(6): 92, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33945073

RESUMO

Genetic engineering of the filamentous fungus Aspergillus oryzae still requires more suitable selection markers for fungal transformation. Our previous work has shown that Agrobacterium tumefaciens-mediated transformation (ATMT) based on the uridine/uracil auxotrophic mechanism with pyrG as the selection marker is very efficient for gene transfer in A. oryzae. In the present study, we delete the hisB gene, which is essential for histidine biosynthesis, in A. oryzae via homologous recombination and demonstrate that hisB is a reliable selection marker for genetic transformation of this fungus. Under optimal conditions, the ATMT efficiency of the histidine auxotrophic A. oryzae reached 515 transformants per 106 spores. Especially, we have succeeded in constructing a new ATMT system based on dual auxotrophic A. oryzae mutants with two different selection markers including hisB and pyrG. This dual auxotrophic ATMT system displayed a transformation efficiency of 232 transformants per 106 spores for the hisB marker and 318 transformants per 106 spores for the pyrG marker. By using these selectable markers, the co-expression of the DsRed and GFP fluorescent reporter genes was implemented in a single fungal strain. Furthermore, we could perform both the deletion and complementation of the laeA regulatory gene in the same strain of A. oryzae to examine its function. Conclusively, the ATMT system constructed in our work represents a promising genetic tool for studies on recombinant expression and gene function in the industrially important fungus A. oryzae.


Assuntos
Agrobacterium tumefaciens/fisiologia , Aspergillus oryzae/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Engenharia Genética/métodos , Aspergillus oryzae/genética , Deleção de Genes , Genes Reporter , Histidina/biossíntese , Transformação Genética , Uracila/biossíntese
4.
Heliyon ; 9(2): e13663, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36852059

RESUMO

Destruction of citrus fruits by fungal pathogens during preharvest and postharvest stages can result in severe losses for the citrus industry. Antagonistic microorganisms used as biological agents to control citrus pathogens are considered alternatives to synthetic fungicides. In this study, we aimed to identify fungal pathogens causing dominant diseases on citrus fruits in a specialized citrus cultivation region of Vietnam and inspect soilborne Bacillus isolates with antifungal activity against these pathogens. Two fungal pathogens were characterized as Colletotrichum gloeosporioides and Penicillium digitatum based on morphological characteristics and ribosomal DNA internal transcribed spacer sequence analyses. Reinfection assays of orange fruits confirmed that C. gloeosporioides causes stem-end rot, and P. digitatum triggers green mold disease. By the heterologous expression of the green fluorescent protein (GFP) in C. gloeosporioides using Agrobacterium tumefaciens-mediated transformation, we could observe the fungal infection process of the citrus fruit stem-end rot caused by C. gloeosporioides for the first time. Furthermore, we isolated and selected two soilborne Bacillus strains with strong antagonistic activity for preventing the decay of citrus fruits by these pathogens. Molecular analyses of 16 S rRNA and gyrB genes showed that both isolates belong to B. velezensis. Antifungal activity assays indicated that bacterial culture suspensions could strongly inhibit C. gloeosporioides and P. digitatum, and shield orange fruits from the invasion of the pathogens. Our work provides a highly effective Bacillus-based preservative solution for combating the fungal pathogens C. gloeosporioides and P. digitatum to protect citrus fruits at the postharvest stages.

5.
J Fungi (Basel) ; 9(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37888227

RESUMO

The medicinal mushroom Cordyceps militaris is widely exploited in traditional medicine and nutraceuticals in Asian countries. However, fruiting body production in C. militaris is facing degeneration through cultivation batches, and the molecular mechanism of this phenomenon remains unclear. This study showed that fruiting body formation in three different C. militaris strains, namely G12, B12, and HQ1, severely declined after three successive culturing generations using the spore isolation method. PCR analyses revealed that these strains exist as heterokaryons and possess both the mating-type loci, MAT1-1 and MAT1-2. Further, monokaryotic isolates carrying MAT1-1 or MAT1-2 were successfully separated from the fruiting bodies of all three heterokaryotic strains. A spore combination of the MAT1-1 monokaryotic isolate and the MAT1-2 monokaryotic isolate promoted fruiting body formation, while the single monokaryotic isolates could not do that themselves. Notably, we found that changes in ratios of the MAT1-2 spores strongly influenced fruiting body formation in these strains. When the ratios of the MAT1-2 spores increased to more than 15 times compared to the MAT1-1 spores, the fruiting body formation decreased sharply. In contrast, when MAT1-1 spores were increased proportionally, fruiting body formation was only slightly reduced. Our study also proposes a new solution to mitigate the degeneration in the heterokaryotic C. militaris strains caused by successive culturing generations.

6.
Microbiol Res ; 249: 126773, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33940365

RESUMO

Purpureocillium lilacinum (formerly Paecilomyces lilacinus) is widely commercialized for controlling plant-parasitic nematodes and represents a potential cell factory for enzyme production. This nematicidal fungus is intrinsically resistant to common antifungal agents used for genetic transformation. Therefore, molecular investigations in P. lilacinum are still limited so far. In the present study, we have established a new Agrobacterium tumefaciens-mediated transformation (ATMT) system in P. lilacinum based on the uridine/uracil auxotrophic mechanism. Here, uridine/uracil auxotrophic mutants were simply generated via UV irradiation instead of a complicated genetic approach for the pyrG gene deletion. A stable uridine/uracil auxotrophic mutant was then selected as a recipient for fungal transformation. We further indicated that the pyrG gene from Aspergillus niger can be used as a selectable marker for genetic transformation of P. lilacinum. Under optimized conditions for ATMT, the transformation efficiency reached 2873 ± 224 transformants per 106 spores. Using the constructed ATMT system, we succeeded in expressing the DsRed reporter gene in P. lilacinum. Additionally, we have identified a very promising mutant for chitinase production from a collection of T-DNA insertion transformants. This mutant possesses a special phenotype of hyper-branching mycelium and produces more conidia in comparison to the wild strain. Conclusively, our ATMT system can be exploited for overexpression of target genes or for T-DNA insertion mutagenesis in the agriculturally important fungus P. lilacinum. The genetic approach in the present work may also be applied for developing similar ATMT systems in other fungi, especially for fungi that their genome databases are currently not available.


Assuntos
Agrobacterium tumefaciens/genética , Hypocreales/genética , Transformação Genética , Antifúngicos/farmacologia , Quitinases/genética , Quitinases/metabolismo , DNA Bacteriano/genética , Genes Fúngicos , Genes Reporter , Hypocreales/efeitos dos fármacos , Hypocreales/metabolismo , Mutagênese Insercional , Mutação , Uracila/metabolismo , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa