Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 213: 118174, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183016

RESUMO

Drinking-water treatment in non-networked rural communities relies on the use of point-of-use (PoU) household filters. Source waters treated by PoU filters are often microbially contaminated, but information about human enteric virus reductions in these filters is limited. This study evaluated human rotavirus, adenovirus and norovirus reductions in 10 commonly used, new PoU carbon, polypropylene and polyester microfilters. The viruses were spiked into chlorine-free tap water (pH 8.0, ionic strength 1.22 mM), and 3 sequential challenge tests were conducted in each filter under a constant flow rate of 1 L/min. In most of the filters investigated, the norovirus and adenovirus reductions were similar (P > 0.49). Compared with the norovirus and adenovirus reductions, the rotavirus reductions were significantly lower in the carbon filters (P ≤ 0.009), which may relate to rotavirus's higher zeta potential and lower hydrophobicity. Virus reductions appeared to be dictated by the filter media type through electrostatic and hydrophobic interactions; the effects of filter media pore sizes on virus reductions via physical size-exclusion were very limited. The virus reductions in the carbon filters were significantly greater than those in the polypropylene and polyester filters (P ≤ 0.0001), and they did not differ significantly between the polypropylene and polyester filters (P > 0.24). None of the filters met the "protective" rotavirus reduction level (≥3 log10) required for household drinking-water treatment. Our study's findings highlight a critical need for additional water treatment when using PoU microfilters, for example, water boiling or ultraviolet radiation, or the use of effective surface-modified filter media to prevent drinking-waterborne infections from enteric viruses.

2.
Virology ; 502: 20-27, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27960110

RESUMO

Small non-coding microRNAs (miRNAs) can modulate the outcome of virus infection. Here we explore the role of miRNAs in insect-virus interactions, in vivo, using the natural Drosophila melanogaster-Drosophila C virus (DCV) model system. Comparison of the miRNA expression profiles in DCV-infected and uninfected flies showed altered miRNA levels due to DCV infection, with the largest change in abundance observed for miR-956-3p. Knockout of miR-956 resulted to delayed DCV-induced mortality and decreased viral accumulation compared to wild-type flies. A screen of 84 putative miR-956-3p target genes identified regulation of Ectoderm-expressed 4 (Ect4) in miR-956 knockout flies and, separately, DCV infection. In Ect4 knockdown flies DCV-induced mortality occurred more quickly and virus accumulation was increased. Taken together, results suggest that the host-protective and antiviral consequences of miR-956 suppression during in vivo infection of D. melanogaster with its natural pathogen DCV is conferred through miR-956-3p induction of its target Ect4.


Assuntos
Dicistroviridae/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virologia , Vírus de Insetos/fisiologia , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Replicação Viral , Animais , Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Dicistroviridae/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Parasita , Vírus de Insetos/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa