Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34575438

RESUMO

Oxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.

2.
J Vis Exp ; (163)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33016936

RESUMO

One of the commonly used models for ischemic retinopathies is the oxygen-induced retinopathy (OIR) model. Here we describe detailed protocols for the OIR model induction and its readouts in both mice and rats. Retinal neovascularization is induced in OIR by exposing rodent pups either to hyperoxia (mice) or alternating levels of hyperoxia and hypoxia (rats). The primary readouts of these models are the size of neovascular (NV) and avascular (AVA) areas in the retina. This preclinical in vivo model can be used to evaluate the efficacy of potential anti-angiogenic drugs or to address the role of specific genes in the retinal angiogenesis by using genetically manipulated animals. The model has some strain and vendor specific variation in the OIR induction which should be taken into consideration when designing the experiments.


Assuntos
Modelos Animais de Doenças , Isquemia/induzido quimicamente , Oxigênio/farmacologia , Doenças Retinianas/induzido quimicamente , Animais , Isquemia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/fisiopatologia , Doenças Retinianas/complicações , Neovascularização Retiniana/complicações
3.
Ocul Surf ; 17(2): 257-264, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30807830

RESUMO

PURPOSE: To determine the efficacy of the superoxide dismutase mimetic, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), in vitro in human corneal epithelial (HCE-T) cells and in vivo in a preclinical mouse model for dry-eye disease (DED). METHODS: In vitro, HCE-T cultures were exposed either to tert-butylhydroperoxide (tBHP) to generate oxidative stress or to hyperosmolar conditions modeling cellular stress during DED. Cells were pre-treated with Mn-TM-2-PyP or vehicle. Mn-TM-2-PyP permeability across stratified HCE-T cells was assayed. In vivo, Mn-TM-2-PyP (0.1% w/v in saline) was delivered topically as eye drops in a desiccating stress/scopolamine model for DED. Preclinical efficacy was compared to untreated, vehicle- and ophthalmic cyclosporine emulsion-treated mice. RESULTS: Mn-TM-2-PyP protected HCE-T cells in a dose-dependent manner against tBHP-induced oxidative stress as determined by calculating the IC50 for tBHP in the resazurin, MTT and lactate dehydrogenase release cell viability assays. Mn-TM-2-PyP did not protect HCE-T cells from hyperosmolar insult. Its permeability coefficient across a barrier of HCE-T cells was 1.1 ±â€¯0.05 × 10-6 cm/s and the mass balance was 62 ±â€¯0.6%. In vivo, topical dosing with Mn-TM-2-PyP resulted in a statistically significant reduction of corneal fluorescein staining, similar to ophthalmic cyclosporine emulsion. Furthermore, Mn-TM-2-PyP significantly reduced leukocyte infiltration into lacrimal glands and prevented degeneration of parenchymal tissue. No protective effect against loss of conjunctival goblet cells was observed. Notably, Mn-TM-2-PyP did not produce ocular toxicity when administered topically. DISCUSSION: Our data suggest that Mn-TM-2-PyP, a prototypic synthetic metalloporphyrin compound with potent catalytic antioxidant activity, can improve signs of DED in vivo by reducing oxidative stress in corneal epithelial cells.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Células Caliciformes/patologia , Metaloporfirinas/administração & dosagem , Estresse Oxidativo , Animais , Antioxidantes , Contagem de Células , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Células Caliciformes/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Soluções Oftálmicas/administração & dosagem , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa