RESUMO
The cerebrospinal fluid (CSF) is a key matrix for discovery of biomarkers relevant for prognosis and the development of therapeutic targets in pediatric central nervous system malignancies. However, the wide range of protein concentrations and age-related differences in children makes such discoveries challenging. In addition, pediatric CSF samples are often sparse and first prioritized for clinical purposes. The present work focused on optimizing each step of the proteome analysis workflow to extract the most detailed proteome information possible from the limited CSF resources available for research purposes. The strategy included applying sequential ultracentrifugation to enrich for extracellular vesicles (EV) in addition to analysis of a small volume of raw CSF, which allowed quantification of 1351 proteins (+55% relative to raw CSF) from 400 µL CSF. When including a spectral library, a total of 2103 proteins (+240%) could be quantified. The workflow was optimized for CSF input volume, tryptic digestion method, gradient length, mass spectrometry data acquisition method and database search strategy to quantify as many proteins a possible. The fully optimized workflow included protein aggregation capture (PAC) digestion, paired with data-independent acquisition (DIA, 21 min gradient) and allowed 2989 unique proteins to be quantified from only 400 µL CSF, which is a 340% increase in proteins compared to analysis of a tryptic digest of raw CSF.
Assuntos
Neoplasias do Sistema Nervoso Central , Proteoma , Humanos , Criança , Proteoma/análise , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Proteômica/métodos , Proteínas do Líquido Cefalorraquidiano/análise , Proteínas do Líquido Cefalorraquidiano/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/líquido cefalorraquidiano , Fluxo de Trabalho , Pré-Escolar , Ultracentrifugação , Adolescente , Feminino , Masculino , LactenteRESUMO
Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) implicates enhanced intrathecal chemotherapy, which is related to CNS toxicity. Whether CNS involvement alone contributes to CNS toxicity remains unclear. We studied the occurrence of all CNS toxicities, seizures, and posterior reversible encephalopathy syndrome (PRES) in children with ALL without enhanced intrathecal chemotherapy with CNS involvement (n = 64) or without CNS involvement (n = 256) by flow cytometry. CNS involvement increased the risk for all CNS toxicities, seizures, and PRES in univariate analysis and, after adjusting for induction therapy, for seizures (hazard ratio [HR] = 3.33; 95% confidence interval [CI]: 1.26-8.82; p = 0.016) and PRES (HR = 4.85; 95% CI: 1.71-13.75; p = 0.003).
Assuntos
Neoplasias do Sistema Nervoso Central , Síndrome da Leucoencefalopatia Posterior , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Criança , Citometria de Fluxo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , ConvulsõesRESUMO
Infants with acute lymphoblastic leukaemia (ALL) have a high frequency of central nervous system (CNS) involvement. Flow cytometric analysis of cerebrospinal fluid (CSF) was recently demonstrated to be a sensitive method for detecting CNS involvement in childhood ALL. In the present study, CSF from 14 infants was collected at routine lumbar punctures and analysed by multicolour flow cytometry. At initial diagnosis, leukaemic blasts were detected in CSF by flow cytometry in 11 patients (78·6%) compared to seven patients (50%) by cytospin. Larger studies are needed to determine if CSF flow cytometry has prognostic value in infant ALL.
Assuntos
Líquido Cefalorraquidiano/citologia , Citometria de Fluxo/métodos , Infiltração Leucêmica/diagnóstico , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/líquido cefalorraquidiano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RecidivaRESUMO
BACKGROUND: The cerebrospinal fluid (CSF) proteome could offer important insights into central nervous system (CNS) malignancies. To advance proteomic research in pediatric CNS cancer, the current study aims to (1) evaluate past mass spectrometry-based workflows and (2) synthesize previous CSF proteomic data, focusing on both qualitative summaries and quantitative re-analysis. MAIN: In our analysis of 11 studies investigating the CSF proteome in pediatric patients with acute lymphoblastic leukemia (ALL) or primary brain tumors, we observed significant methodological variability. This variability negatively affects comparative analysis of the included studies, as per GRADE criteria for quality of evidence. The qualitative summaries covered 161 patients and 134 non-tumor controls, while the application of validation cohort varied among the studies. The quantitative re-analysis comprised 15 B-ALL vs 6 "healthy" controls and 15 medulloblastoma patients vs 22 non-tumor controls. Certain CSF proteins were identified as potential indicators of specific malignancies or stages of neurotoxicity during chemotherapy, yet definitive conclusions were impeded by inconsistent data. There were no proteins with statistically significant differences when comparing cases versus controls that were corroborated across studies where quantitative reanalysis was feasible. From a gene ontology enrichment, we observed that age disparities between unmatched case and controls may mislead to protein correlations more indicative of age-related CNS developmental stages rather than neuro-oncological disease. Despite efforts to batch correct (HarmonizR) and impute missing values, merging of dataset proved unfeasible and thereby limited meaningful data integration across different studies. CONCLUSION: Infrequent publications on rare pediatric cancer entities, which often involve small sample sizes, are inherently prone to result in heterogeneous studies-particularly when conducted within a rapidly evolving field like proteomics. As a result, obtaining clear evidence, such as CSF proteome biomarkers for CNS dissemination or early-stage neurotoxicity, is currently impractical. Our general recommendations comprise the need for standardized methodologies, collaborative efforts, and improved data sharing in pediatric CNS malignancy research. We specifically emphasize the possible importance of considering natural age-related variations in CSF due to different CNS development stages when matching cases and controls in future studies.
Assuntos
Neoplasias do Sistema Nervoso Central , Espectrometria de Massas , Proteômica , Humanos , Proteômica/métodos , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/diagnóstico , Criança , Proteoma , Proteínas do Líquido Cefalorraquidiano/análise , Proteínas do Líquido Cefalorraquidiano/líquido cefalorraquidianoRESUMO
Immune-checkpoint inhibitors (ICI) are highly effective in reinvigorating T cells to attack cancer. Nevertheless, a large subset of patients fails to benefit from ICI, partly due to lack of the cancer neoepitopes necessary to trigger an immune response. In this study, we used the thiopurine 6-thioguanine (6TG) to induce random mutations and thus increase the level of neoepitopes presented by tumor cells. Thiopurines are prodrugs which are converted into thioguanine nucleotides that are incorporated into DNA (DNA-TG), where they can induce mutation through single nucleotide mismatching. In a pre-clinical mouse model of a mutation-low melanoma cell line, we demonstrated that 6TG induced clinical-grade DNA-TG integration resulting in an improved tumor control that was strongly T cell dependent. 6TG exposure increased the tumor mutational burden, without affecting tumor cell proliferation and cell death. Moreover, 6TG treatment re-shaped the tumor microenvironment by increasing T and NK immune cells, making the tumors more responsive to immune-checkpoint blockade. We further validated that 6TG exposure improved tumor control in additional mouse models of melanoma. These findings have paved the way for a phase I/II clinical trial that explores whether treatment with thiopurines can increase the proportion of otherwise treatment-resistant cancer patients who may benefit from ICI therapy (NCT05276284).
Assuntos
Melanoma , Tioguanina , Animais , Camundongos , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Tioguanina/farmacologia , Tioguanina/uso terapêutico , Microambiente Tumoral , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como AssuntoRESUMO
Despite the excellent prognosis for children and adolescents with acute lymphoblastic lymphoma (ALL), the involvement of the central nervous system (CNS) represents a major therapeutic challenge. Patients who develop CNS relapse have a very poor prognosis, and since current methods cannot reliably identify patients with CNS involvement or patients at high risk of CNS relapse, all children with ALL receive CNS-directed treatment. The current golden standard for detecting CNS involvement is the assessment of cytomorphology on cytospin slides of cerebrospinal fluid (CSF). This technique is inadequate due to low sensitivity and reproducibility. Flow cytometric analysis of CSF represent a novel, highly specific and sensitive technique for the detection of leukemic cells in the CNS. In prospective studies, CSF flow cytometry demonstrated two to three times higher rates of CNS involvement at diagnosis of childhood ALL than conventional cytospin, and especially demonstrated superior sensitivity in detecting low-level CNS disease. CNS involvement determined via flow cytometry has been linked to a higher risk of CNS relapse and poor outcomes in several studies. In this review, we discuss the central analytical concepts of CSF flow cytometry and summarize the current evidence supporting the use of flow cytometric detection of malignant blasts as a biomarker of CNS involvement in childhood ALL.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Adolescente , Biomarcadores , Sistema Nervoso Central/patologia , Criança , Citometria de Fluxo/métodos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Estudos Prospectivos , Recidiva , Reprodutibilidade dos TestesRESUMO
Delivery of effective anti-leukemic agents to the central nervous system (CNS) is considered essential for cure of childhood acute lymphoblastic leukemia. Current CNS-directed therapy comprises systemic therapy with good CNS-penetration accompanied by repeated intrathecal treatments up to 26 times over 2-3 years. This approach prevents most CNS relapses, but is associated with significant short and long term neurotoxicity. Despite this burdensome therapy, there have been no new drugs licensed for CNS-leukemia since the 1960s, when very limited anti-leukemic agents were available and there was no mechanistic understanding of leukemia survival in the CNS. Another major barrier to improved treatment is that we cannot accurately identify children at risk of CNS relapse, or monitor response to treatment, due to a lack of sensitive biomarkers. A paradigm shift in treating the CNS is needed. The challenges are clear - we cannot measure CNS leukemic load, trials have been unable to establish the most effective CNS treatment regimens, and non-toxic approaches for relapsed, refractory, or intolerant patients are lacking. In this review we discuss these challenges and highlight research advances aiming to provide solutions. Unlocking the potential of risk-adapted non-toxic CNS-directed therapy requires; (1) discovery of robust diagnostic, prognostic and response biomarkers for CNS-leukemia, (2) identification of novel therapeutic targets combined with associated investment in drug development and early-phase trials and (3) engineering of immunotherapies to overcome the unique challenges of the CNS microenvironment. Fortunately, research into CNS-ALL is now making progress in addressing these unmet needs: biomarkers, such as CSF-flow cytometry, are now being tested in prospective trials, novel drugs are being tested in Phase I/II trials, and immunotherapies are increasingly available to patients with CNS relapses. The future is hopeful for improved management of the CNS over the next decade.
Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Estudos Prospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Sistema Nervoso Central , Recidiva , Microambiente TumoralRESUMO
Central nervous system (CNS) involvement by cytospin is associated with increased risk of relapse in childhood acute lymphoblastic leukemia. We investigated if flow cytometric analysis of cerebrospinal fluid (CSF) at diagnosis improves the prediction of relapse. This prospective cohort study included patients (1.0-17.9 years) treated according to the Nordic Society of Pediatric Hematology and Oncology ALL2008 protocol. CSF flow cytometry samples were obtained at 17 centers, preserved with Transfix®, and analyzed at a central laboratory. One-hundred and seventy-one (25.4%) of 673 patients were positive by flow cytometry (CNSflow+). The 4-year cumulative incidence of relapse was higher for patients with cytospin positivity (CNScyto+) (17.1% vs. 7.5%), CNSflow+ (16.5% vs. 5.6%), and cytospin and/or flow positivity (CNScomb+) (16.7% vs. 5.1%). In Cox regression analysis stratified by immunophenotype and minimal residual disease day 29 and adjusted by sex, predictors of relapse were age (hazard ratio [HR] 1.1, 95% CI 1.1-1.2, P < 0.001), white blood cell count at diagnosis (HR 1.4, 95% CI 1.1-1.6, P < 0.001), and CNScomb+ (HR 2.2, 95% CI 1.0-4.7, P = 0.042). Flow cytometric analysis of CSF improves detection of CNS leukemia, distinguishes patients with high and low risk of relapse, and may improve future risk stratification and CNS-directed therapy.
Assuntos
Recidiva Local de Neoplasia/líquido cefalorraquidiano , Recidiva Local de Neoplasia/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/líquido cefalorraquidiano , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Incidência , Lactente , Masculino , Estudos ProspectivosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.