Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell Mol Neurobiol ; 43(1): 315-325, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34932174

RESUMO

The close interaction between the enteric nervous system, microbiome, and brain in vertebrates is an emerging topic of recent studies. Different species such as rat, mouse, and human are currently being used for this purpose, among others. The transferability of protocols for tissue isolation and sample collection is not always straightforward. Thus, the present work presents a new protocol for isolation and sample collection of rat myenteric plexus cells for in vivo as well as in vitro studies. With the methods and chemicals described in detail, a wide variety of investigations can be performed with regard to normal physiological as well as pathological processes in the postnatal developing enteric nervous system. The fast and efficient preparation of the intestine as the first step is particularly important. We have developed and described a LIENS chamber to obtain optimal tissue quality during intestinal freezing. Cryosections of the flat, snap-frozen intestine can then be prepared for histological examination of the various wall layers of the intestine, e.g. by immunohistochemistry. In addition, these cryosections are suitable for the preparation of defined regions, as shown here using the ganglia of the mesenteric plexus. This specific tissue was obtained by laser microdissection, making the presented methodology also suitable for subsequent analyses that require high quality (specificity) of the samples. Furthermore, we present here a fully modernized protocol for the cultivation of myenteric neurons from the rat intestine, which is suitable for a variety of in vitro studies.


Assuntos
Sistema Nervoso Entérico , Plexo Mientérico , Ratos , Camundongos , Humanos , Animais , Imuno-Histoquímica , Neurônios , Intestino Delgado
2.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743202

RESUMO

Although the enteric nervous system (ENS) functions largely autonomously as part of the peripheral nervous system (PNS), it is connected to the central nervous system (CNS) via the gut-brain axis. In many neurodegenerative diseases, pathological changes occur in addition to gastrointestinal symptoms, such as alpha-synuclein aggregates in Parkinson's disease, which are found early in the ENS. In both the CNS and PNS, vascular endothelial growth factor (VEGF) mediates neuroprotective and neuroregenerative effects. Since the ENS with its close connection to the microbiome and the immune system is discussed as the origin of neurodegenerative diseases, it is necessary to investigate the possibly positive effects of VEGF on enteric neurons. Using laser microdissection and subsequent quantitative RT-PCR as well as immunohistochemistry, for the first time we were able to detect and localize VEGF receptor expression in rat myenteric neurons of different ages. Furthermore, we demonstrate direct neuroprotective effects of VEGF in the ENS in cell cultures. Thus, our results suggest a promising approach regarding neuroprotection, as the use of VEGF (may) prevent neuronal damage in the ENS.


Assuntos
Sistema Nervoso Entérico , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Sistema Nervoso Entérico/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498186

RESUMO

Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1-5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Microglia/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Microglia/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671638

RESUMO

The vascular endothelial growth factor (VEGF) is well known for its wide-ranging functions, not only in the vascular system, but also in the central (CNS) and peripheral nervous system (PNS). To study the role of VEGF in neuronal protection, growth and maturation processes have recently attracted much interest. These effects are mainly mediated by VEGF receptor 2 (VEGFR-2). Current studies have shown the age-dependent expression of VEGFR-2 in Purkinje cells (PC), promoting dendritogenesis in neonatal, but not in mature stages. We hypothesize that microRNAs (miRNA/miR) might be involved in the regulation of VEGFR-2 expression during the development of PC. In preliminary studies, we performed a miRNA profiling and identified miR204-5p as a potential regulator of VEGFR-2 expression. In the recent study, organotypic slice cultures of rat cerebella (postnatal day (p) 1 and 9) were cultivated and VEGFR-2 expression in PC was verified via immunohistochemistry. Additionally, PC at age p9 and p30 were isolated from cryosections by laser microdissection (LMD) to analyse VEGFR-2 expression by quantitative RT-PCR. To investigate the influence of miR204-5p on VEGFR-2 levels in PC, synthetic constructs including short hairpin (sh)-miR204-5p cassettes (miRNA-mimics), were microinjected into PC. The effects were analysed by confocal laser scanning microscopy (CLSM) and morphometric analysis. For the first time, we could show that miR204-5p has a negative effect on VEGF sensitivity in juvenile PC, resulting in a significant decrease of dendritic growth compared to untreated juvenile PC. In mature PC, the overexpression of miR204-5p leads to a shrinkage of dendrites despite VEGF treatment. The results of this study illustrate, for the first time, which miR204-5p expression has the potential to play a key role in cerebellar development by inhibiting VEGFR-2 expression in PC.


Assuntos
MicroRNAs/genética , Células de Purkinje/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Cerebelo/citologia , Cerebelo/fisiologia , Dendritos/fisiologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Microdissecção e Captura a Laser , Masculino , Técnicas de Cultura de Órgãos , Células de Purkinje/efeitos dos fármacos , Ratos Wistar , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481647

RESUMO

The wide-ranging influence of vascular endothelial growth factor (VEGF) within the central (CNS) and peripheral nervous system (PNS), for example through effects on axonal growth or neuronal cell survival, is mainly mediated by VEGF receptor 2 (VEGFR-2). However, the regulation of VEGFR-2 expression during development is not yet well understood. As microRNAs are considered to be key players during neuronal maturation and regenerative processes, we identified the two microRNAs (miRNAs)-miR-129-5p and miR-130a-3p-that may have an impact on VEGFR-2 expression in young and mature sensory and lower motor neurons. The expression level of VEGFR-2 was analyzed by using in situ hybridization, RT-qPCR, Western blot, and immunohistochemistry in developing rats. microRNAs were validated within the spinal cord and dorsal root ganglia. To unveil the molecular impact of our candidate microRNAs, dissociated cell cultures of sensory and lower motor neurons were transfected with mimics and inhibitors. We depicted age-dependent VEGFR-2 expression in sensory and lower motor neurons. In detail, in lower motor neurons, VEGFR-2 expression was significantly reduced during maturation, in conjunction with an increased level of miR-129-5p. In sensory dorsal root ganglia, VEGFR-2 expression increased during maturation and was accompanied by an overexpression of miR-130a-3p. In a second step, the functional significance of these microRNAs with respect to VEGFR-2 expression was proven. Whereas miR-129-5p seems to decrease VEGFR-2 expression in a direct manner in the CNS, miR-130a-3p might indirectly control VEGFR-2 expression in the PNS. A detailed understanding of genetic VEGFR-2 expression control might promote new strategies for the treatment of severe neurological diseases like ischemia or peripheral nerve injury.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Neurônios Motores/metabolismo , Células Receptoras Sensoriais/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Wistar , Medula Espinal/metabolismo
6.
Cell Physiol Biochem ; 53(1): 121-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31230428

RESUMO

Infections with Coxsackievirus B3 and other members of the enterovirus genus are a common reason for myocarditis and sudden cardiac death in modern society. Despite intensive scientific efforts to cure enterovirus infections, there is still no standardized treatment option. The complexity of Coxsackievirus B3´s effects on the host cell make well defined studies on this topic very challenging. However, recent publications report newly found effects of CVB3´s structural and non-structural proteins on infected cells. For the first time, the viral capsid protein VP1 was shown to have direct influence on the viral life-cycle. By shortening the G0 and the G2 phase and simultaneously prolonging the G1 and G1-S phase, the translation of viral proteins is enhanced and the production of viable CVB3 particles is promoted. Coxsackievirus B3´s viroporin, protein 2B, was recently studied in more detail as well. Structural and physiological analyses identified two hydrophilic α-helices in the structure of 2B, enabling it to insert into cellular membranes of host cells. As main target of 2B the endoplasmatic reticulum was identified. The insertion of 2B into the ER membranes leads to an uncontrolled calcium outflow into the cytoplasm. Additional insertion of 2B into the cell membrane leads to host cell destabilization and in the end to release of viral progeny. The importance of the Coxsackievirus B3´s proteases 2A and 3C in pathogenicity is observed since years. Recently, DAP5 and eIf4G were identified as new cleavage targets for protease 2A. Cleavage of DAP-5 into DAP5-N and DAP5-C changes the gene expression of the host cell and promotes cell death. Additionally, protease 3C targets and cleaves procaspase 8 promoting the mitochondrial apoptosis pathway and cell death. Recent studies identified significant effects of CVB3 on mitochondria of infected cells. Mouse cardiomyocytes showed decreased activities of respiratory chain complexes I-III and changed transcription of important subunits of the complexes I-IV. A disrupted energy metabolism may be one of the main causes of cardiac insufficiency and death in CVB3 infected patients. In addition to a modified energy metabolism, CVB3 affects cardiac ion channels, KCNQ1 in particular. SGK1, which is an important mediator in KCNQ1 membrane insertions, is highly upregulated during CVB3 infections. This results in an increased insertion of KCNQ1 into the cell membrane of cardiac cells. Under stress conditions, this KCNQ1 overshoot may lead to a disturbed cardiac action potential and therefore to sudden cardiac death, as it is often observed in CVB3 infected persons.


Assuntos
Infecções por Coxsackievirus/patologia , Enterovirus Humano B/fisiologia , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coxsackievirus/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Enterovirus Humano B/patogenicidade , Humanos , Canal de Potássio KCNQ1/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Proteínas não Estruturais Virais/metabolismo
7.
Cell Physiol Biochem ; 52(6): 1412-1426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075191

RESUMO

BACKGROUND/AIMS: Amyotrophic lateral sclerosis (ALS) is the most common degenerative motor neuron disease in humans. However, the pathogenesis of ALS is not yet understood. The wobbler mouse is considered as an animal model for the sporadic form of ALS due to its spontaneous mutation in the Vps54 gene. Due to transactivation of NDRG2 by p53, this tumor suppressor might play a functional role in stress induced cell death in wobbler mice as well as ALS patients. Furthermore, deregulated microRNAs are often related to neurodegenerative diseases. Thus, the NDRG2 linked miR-375-3p was of interest for this study. METHODS: Here, we investigated the relevance of NDRG2 and miR-375-3p for the pathomechanism of the motor neuronal degeneration in wobbler mice by investigating expression level via qPCR and Western Blot as well as localization of these molecules in the cervical spinal cord by in situ hybridization, immunostaining and mass spectrometric analysis. RESULTS: We were able to show a differential regulation of the expression of NDRG2 as well as miR-375-3p in the cervical part of the spinal cord of wobbler mice. In addition, for the first time we were able to demonstrate an expression of NDRG2 in motor neurons using different techniques. CONCLUSION: The present study has shown NDRG2 and miR-375-3p to be promising targets for further research of the pathogenesis of sporadic ALS in the wobbler mouse model. Based on these results and in combination with previous published data we could develop a putative pro-apoptotic mechanism in the spinal cord of the wobbler mouse.


Assuntos
MicroRNAs/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Apoptose , Modelos Animais de Doenças , Regulação para Baixo , Hibridização In Situ , Camundongos , Microscopia de Fluorescência , Neurônios Motores/metabolismo , Proteínas/genética , Medula Espinal/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Cell Mol Neurobiol ; 38(7): 1399-1412, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066224

RESUMO

Primary neurons are difficult to cultivate because they are often part of a complex tissue, and synaptically connected to numerous other cell types. These circumstances often prevent us from unveiling molecular and metabolic mechanisms of distinct cells, as functional signals or assays cannot clearly be correlated with them due to interfering signals from other parts of the culture. We therefore present an up-to-date method for obtaining a highly purified neuronal culture of Purkinje cells. In the past, Purkinje cells were successfully isolated from young mouse cerebella, but this protocol was never adapted to other mammals. We therefore provide an updated and adjusted protocol for Purkinje cell isolation from rat instead of mouse cerebella. To purify Purkinje cells, we obtained perinatal rat cerebella, dissociated them and performed a Percoll gradient centrifugation to segregate the smaller and larger cell fractions. In a second step, we performed an immunopanning procedure to enrich only Purkinje cells from the large cell fraction. Based on former protocols, we used a different antibody for the immunopanning procedure and adjusted several aspects from the initial protocol to improve the yield and vitality of Purkinje cells. We provide RT-qPCR-based purity data obtained with this protocol and show the behaviour and the growth of these purified Purkinje cells. We provide a highly reproducible purification protocol for Purkinje cell cultures of high purity that allows functional analysis and downstream assays on living rat Purkinje cells and further morphological growth analysis in future.


Assuntos
Cerebelo/citologia , Cultura Primária de Células/métodos , Células de Purkinje/citologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos , Camundongos , Células de Purkinje/fisiologia , Ratos , Ratos Wistar
9.
Int J Mol Sci ; 19(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382077

RESUMO

A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott-Aldrich-Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Cones de Crescimento/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Células Cultivadas , Embrião de Galinha , Gânglios Espinais/citologia , Cones de Crescimento/efeitos dos fármacos , Quinases Lim/metabolismo , Transporte Proteico , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
10.
Histochem Cell Biol ; 147(5): 555-564, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27942867

RESUMO

Thymosin ß4 (Tß4), the principal G-actin regulating entity in eukaryotic cells, has also multiple intra- and extracellular functions related to tissue regeneration and healing. While its effect in adult organs is being widely investigated, currently, little is known about its influence on embryonic tissues, i.e., in the developing nervous system. The importance of Tß4 for neural stem cell proliferation in the embryonic chicken optic tectum (OT) has previously been shown by us for the first time. In the present study, using in ovo electroporation, we carried out a quantification of the effects of the Tß4-overexpression on the developing chicken OT between E4 and E6 at the hemisphere as well as cellular level. We precisely examined tissue growth and characterized cells arising from the elevated mitotic activity of progenitor cells. By using spinning-disk confocal laser scanning microscopy, we were able to visualize these effects across whole OT sections. Our experiments now demonstrate more clearly that the overexpression of Tß4 leads to a tangential expansion of the treated OT-hemisphere and that, under these circumstances, overall density of tectal and in particular of postmitotic neuronal cells is increased. Thanks to this new quantitative approach, the present results extend our previous findings that Tß4 is important for the proliferation of progenitor cells, neurogenesis, tangential expansion, and tissue growth in the young embryonic chicken optic tectum. Taken together, our results further illustrate and support the current idea that Tß4 is widely implicated in shaping and maintenance of the nervous system.


Assuntos
Neurônios/metabolismo , Colículos Superiores/citologia , Colículos Superiores/crescimento & desenvolvimento , Timosina/metabolismo , Animais , Galinhas , Imuno-Histoquímica , Colículos Superiores/metabolismo , Timosina/análise , Timosina/biossíntese , Timosina/genética
11.
Cerebellum ; 16(2): 376-387, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27387430

RESUMO

MicroRNAs (miRNAs) are short noncoding RNAs of 19-25 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs is associated with many disorders and neurodegenerative diseases affecting numerous different pathways and processes, of which many have not yet been completely explored. Recent studies even indicate a crucial role of miRNAs during brain development, with differential expression patterns of several miRNAs seen in both developing and mature cells. A miRNA profiling in brain tissue and the fundamental understanding of their effects might optimize the therapeutical treatment of various neurological disorders. In this study, we performed miRNA array analysis of enriched cerebellar Purkinje cell (PC) samples from both young and mature rat cerebella. We used laser microdissection (LMD) to enrich PC for a highly specific miRNA profiling. Altogether, we present the expression profile of at least 27 miRNAs expressed in rat cerebellar PC and disclose a different expression pattern of at least three of these miRNAs during development. These miRNAs are potential candidates for the regulation and control of cerebellar PC development, including neuritic and dendritic outgrowth as well as spine formation.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , MicroRNAs/metabolismo , Células de Purkinje/metabolismo , Animais , Cerebelo/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Azul de Metileno , Análise em Microsséries , Células de Purkinje/citologia , RNA Mensageiro/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
12.
Histochem Cell Biol ; 145(1): 5-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26496921

RESUMO

ATOH8 is a bHLH transcription factor playing roles in a variety of developmental processes such as neurogenesis, differentiation of pancreatic precursor cells, development of kidney and muscle, and differentiation of endothelial cells. PPP3CB belongs to the catalytic subunit of the serine/threonine phosphatase, calcineurin, which can dephosphorylate its substrate proteins to regulate their physiological activities. In our study, we demonstrated that ATOH8 interacts with PPP3CB in vitro with different approaches. We show that the conserved catalytic domain of PPP3CB interacts with both the N-terminus and the bHLH domain of ATOH8. Although the interaction domain of PPP3CB is conserved among all isoforms of calcineurin A, ATOH8 selectively interacts with PPP3CB instead of PPP3CA, probably due to the unique proline-rich region present in the N-terminus of PPP3CB, which controls the specificity of its interaction partners. Furthermore, we show that inhibition of the interaction with calcineurin inhibitor, cyclosporin A (CsA), leads to the retention of ATOH8 to the cytoplasm, suggesting that the interaction renders nuclear localization of ATOH8 which may be critical to control its activity as transcription factor.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Inibidores de Calcineurina/química , Calcineurina/química , Ciclosporina/química , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células COS , Calcineurina/genética , Sinalização do Cálcio/genética , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Análise de Sequência de DNA
14.
Mol Cell Proteomics ; 13(2): 475-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284412

RESUMO

FE65 is a cytosolic adapter protein and an important binding partner of amyloid precursor protein. Dependent on Thr668 phosphorylation in amyloid precursor protein, which influences amyloidogenic amyloid precursor protein processing, FE65 undergoes nuclear translocation, thereby transmitting a signal from the cell membrane to the nucleus. As this translocation may be relevant in Alzheimer disease, and as FE65 consists of three protein-protein interaction domains able to bind and affect a variety of other proteins and downstream signaling pathways, the identification of the FE65 interactome is of central interest in Alzheimer disease research. In this study, we identified 121 proteins as new potential FE65 interacting proteins in a pulldown/mass spectrometry approach using human post-mortem brain samples as protein pools for recombinantly expressed FE65. Co-immunoprecipitation assays further validated the interaction of FE65 with the candidates SV2A and SERCA2. In parallel, we investigated the whole cell proteome of primary hippocampal neurons from FE65/FE65L1 double knockout mice. Notably, the validated FE65 binding proteins were also found to be differentially abundant in neurons derived from the FE65 knockout mice relative to wild-type control neurons. SERCA2 is an important player in cellular calcium homeostasis, which was found to be up-regulated in double knockout neurons. Indeed, knock-down of FE65 in HEK293T cells also evoked an elevated sensitivity to thapsigargin, a stressor specifically targeting the activity of SERCA2. Thus, our results suggest that FE65 is involved in the regulation of intracellular calcium homeostasis. Whereas transfection of FE65 alone caused a typical dot-like phenotype in the nucleus, co-transfection of SV2A significantly reduced the percentage of FE65 dot-positive cells, pointing to a possible role for SV2A in the modulation of FE65 intracellular targeting. Given that SV2A has a signaling function at the presynapse, its effect on FE65 intracellular localization suggests that the SV2A/FE65 interaction might play a role in synaptic signal transduction.


Assuntos
Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Animais , Encéfalo/patologia , Células Cultivadas , Embrião de Mamíferos , Células HEK293 , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Ligação Proteica , Mapas de Interação de Proteínas/genética , Sinapses/genética , Sinapses/metabolismo
15.
J Cell Sci ; 126(Pt 11): 2480-92, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23572515

RESUMO

The intracellular domain of the amyloid precursor protein (AICD) is generated following cleavage of the precursor by the γ-secretase complex and is involved in membrane to nucleus signaling, for which the binding of AICD to the adapter protein FE65 is essential. Here we show that FE65 knockdown causes a downregulation of the protein Bloom syndrome protein (BLM) and the minichromosome maintenance (MCM) protein family and that elevated nuclear levels of FE65 result in stabilization of the BLM protein in nuclear mobile spheres. These spheres are able to grow and fuse, and potentially correspond to the nuclear domain 10. BLM plays a role in DNA replication and repair mechanisms and FE65 was also shown to play a role in DNA damage response in the cell. A set of proliferation assays in our work revealed that FE65 knockdown in HEK293T cells reduced cell replication. On the basis of these results, we hypothesize that nuclear FE65 levels (nuclear FE65/BLM containing spheres) may regulate cell cycle re-entry in neurons as a result of increased interaction of FE65 with BLM and/or an increase in MCM protein levels. Thus, FE65 interactions with BLM and MCM proteins may contribute to the neuronal cell cycle re-entry observed in brains affected by Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Núcleo Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Proteínas Nucleares/genética , RecQ Helicases/genética
16.
J Neuroinflammation ; 12: 215, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597538

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder of the upper and lower motor neurons, characterized by rapid progressive weakness, muscle atrophy, dysarthria, dysphagia, and dyspnea. Whereas the exact cause of ALS remains uncertain, the wobbler mouse (phenotype WR; genotype wr/wr) equally develops a progressive degeneration of motor neurons in the spinal cord and motor cortex with striking similarities to sporadic human ALS, suggesting the possibility of a common pathway to cell death. METHODS: With the aid of immunohistochemistry, confocal laser scanning microscopy, and transmission electron microscopy techniques, we analyze the proliferation behavior of microglial cells and astrocytes. We also investigate possible motor neuron death in the mouse motor cortex at different stages of the wobbler disease, which so far has not received much attention. RESULTS: An abnormal density of Iba-1-positive microglial cells expressing pro-inflammatory tumor necrosis factor (TNF) alpha- and glial fibrillary acidic protein (GFAP)-positive activated astroglial cells was detected in the motor cortex region of the WR mouse 40 days postnatal (d.p.n.). Motor neurons in the same area show caspase 3 activation indicating neurodegenerative processes, which may cause progressive paralysis of the WR mice. It could also cause cell degeneration, such as vacuolization, dilation of the ER, and swollen mitochondria at the same time, and support the assumption that inflammation might be an important contributing factor of motor neuron degeneration. This would appear to be confirmed by the fact that there was no conspicuous increase of microglial cells and astrocytes in the motor cortex of control mice at any time. CONCLUSIONS: Activated microglial cells secrete a variety of pro-inflammatory and neurotoxic factors, such as TNF alpha, which could initiate apoptotic processes in the affected wobbler motor neurons, as reflected by caspase 3 activation, and thus, the neuroinflammatory processes might influence or exacerbate the neurodegeneration. Although it remains to be clarified whether the immune response is primary or secondary and how harmful or beneficial it is in the WR motor neuron disease, anti-inflammatory treatment might be considered.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Mediadores da Inflamação , Córtex Motor/patologia , Neurônios/patologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Morte Celular/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Córtex Motor/metabolismo , Neurônios/metabolismo
17.
Histochem Cell Biol ; 143(6): 575-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25578518

RESUMO

The basic helix-loop-helix transcription factor Math6 was shown to have important regulatory functions during many developmental events. However, a systematic description of Math6 expression during mouse embryonic development is up to now still lacking. We carried out this study to show Math6 expression at different stages of mouse embryonic development aiming to provide a wide insight into the regulatory functions during the mouse organogenesis. Using immunohistochemistry, we could show that Math6 expression is activated in the inner cell mass at the blastocyst stage and in the neural tube as well as somatic and splanchnic mesoderm at stage E8.5. At stages E8.5 and E10.5, Math6 transcripts were detected in the myotome, neural tube, pharyngeal arches, foregut and heart. At stages E11.5 and E12.5, Math6 transcripts were accumulated in the developing brain, heart, limb buds and liver. The heterozygous transgenic mouse embryos carrying EGFP-Cre under the Math6 promoter were used to analyze Math6 expression at later stages by means of immunohistochemistry against EGFP protein. EGFP was observed in the neural tube, heart, lung, skeletal muscle, skin, cartilage, trachea and aorta. We have observed Math6 expression in various organs at early and late stages of mouse development, which illustrates the involvement of Math6 in multiple developmental events.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Embrionário/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA Mensageiro/análise , RNA Mensageiro/genética
18.
Cell Mol Life Sci ; 71(9): 1723-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23982753

RESUMO

Cerebellar Purkinje cells (PC) physiologically reveal an age-dependent expression of progesterone with high endogenous concentrations during the neonatal period. Even if progesterone has been previously shown to induce spinogenesis, dendritogenesis and synaptogenesis in immature PC, data about the effects of progesterone on mature PC are missing, even though they could be of significant therapeutic interest. The current study demonstrates for the first time a progesterone effect, depending on the developmental age of PC. Comparable with the physiological course of the progesterone concentration, experimental treatment with progesterone for 24 h achieves the highest effects on the dendritic tree during the early neonate, inducing an highly significant increase in dendritic length, spine number and spine area, while spine density in mature PC could not be further stimulated by progesterone incubation. Observed progesterone effects are certainly mediated by classical progesterone receptors, as spine area and number were comparable to controls when progesterone incubation was combined with mifepristone (incubation for 24 h), an antagonist of progesterone receptors A and B (PR-A/PR-B). In contrast, an increase in the spine number and area of both immature and mature PC was detected when slice cultures were incubated with mifepristone for more than 72 h (mifepristone long-time incubation, MLTI). By including time-lapse microscopy, electron microscopic techniques, PCR, western blot, and MALDI IMS receptor analysis, as well as specific antagonists like trilostane and AG 205, we were able to detect the underlying mechanism of this diverging mifepristone effect. Thus, our results provide new insights into the function and signaling mechanisms of the recently described progesterone receptor membrane component 1 (PGRMC1) in PC. It is highly suitable that progesterone does not just induce effects by the well-known genomic mechanisms of the classical progesterone receptors but also acts through PGRMC1 mediated non-genomic mechanisms. Thus, our results provide first proofs for a previously discussed progesterone-dependent induction of neurosteroidogenesis in PC by interaction with PGRMC1. But while genomic progesterone effects mediated through classical PR-A and PR-B seem to be restricted to the neonatal period of PC, PGRMC1 also transmits signals by non-genomic mechanisms like regulation of the neurosteroidogenesis in mature PC. Thus, PGRMC1 might be an interesting target for future clinical studies and therapeutic interventions.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Proteínas de Membrana/metabolismo , Mifepristona/farmacologia , Células de Purkinje/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Animais , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Feminino , Masculino , Proteínas de Membrana/genética , Progesterona/farmacologia , Progesterona Redutase/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Progesterona/genética
19.
Dev Dyn ; 243(5): 690-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375914

RESUMO

BACKGROUND: During embryonic development cell migration plays a principal role in several processes. In past decades, many studies were performed to investigate migrational events, occurring during embryonic organogenesis, neurogenesis, gliogenesis or myogenesis, just to name a few. Although different common techniques are already used for this purpose, one of their major limitations is the static character. However, cell migration is a sophisticated and highly dynamic process, wherefore new appropriate technologies are required to investigate this event in all its complexity. RESULTS AND CONCLUSIONS: Here we report a novel approach for dynamic analysis of cell migration within embryonic tissue. We combine the modern transfection method of in ovo electroporation with the use of tissue slice culture and state-of-the-art imaging techniques, such as confocal laser scanning microscopy or spinning disc confocal microscopy, and thus, develop a method to study live the migration of myogenic precursors in chicken embryos. The conditions and parameters used in this study allow long-term imaging for up to 24 hr. Our protocol can be easily adapted for investigations of a variety of other migrational events and provides a novel conception for dynamic analysis of migration during embryonic development.


Assuntos
Movimento Celular/fisiologia , Eletroporação/métodos , Óvulo/citologia , Óvulo/metabolismo , Animais , Embrião de Galinha , Microscopia Confocal/métodos
20.
Biochim Biophys Acta ; 1834(1): 387-94, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22902274

RESUMO

The ternary complex consisting of AICD/FE65/TIP60 is thought to play a role in gene expression and was suggested to have a crucial impact in Alzheimer's disease. AICD is the intracellular subdomain of the amyloid precursor protein (APP) and able to bind the adapter protein FE65 and the histone acetyltransferase TIP60 setting up a nuclear dot-like phenotype. Within this work we readdressed the generation of the complex as a function of its compartments. Subsequently, we studied the proteome of AFT expressing cells vs. controls and identified Stathmin1 significantly down-regulated in AFT cells. Stathmin1 functions as an important regulatory protein of microtubule dynamics and was found associated with neurofibrillary tangles in brains of Alzheimer's disease patients. We validated our results using an independent label-free mass spectrometry based method using the same cell culture model. In a reversal model with diminished APP expression, caused by simultaneous knock-down of all three members of the APP family, we further confirmed our results, as Stathmin1 was regulated in an opposite fashion. We hypothesize that AICD-dependent deregulation of Stathmin1 causes microtubule disorganization, which might play an important role for the pathophysiology of Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Regulação para Baixo , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Estatmina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular , Histona Acetiltransferases/genética , Humanos , Lisina Acetiltransferase 5 , Microtúbulos/genética , Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Estatmina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa