Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Pathog ; 16(9): e1008828, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991636

RESUMO

Field isolates of foot-and-mouth disease viruses (FMDVs) utilize integrin-mediated cell entry but many, including Southern African Territories (SAT) viruses, are difficult to adapt to BHK-21 cells, thus hampering large-scale propagation of vaccine antigen. However, FMDVs acquire the ability to bind to cell surface heparan sulphate proteoglycans, following serial cytolytic infections in cell culture, likely by the selection of rapidly replicating FMDV variants. In this study, fourteen SAT1 and SAT2 viruses, serially passaged in BHK-21 cells, were virulent in CHO-K1 cells and displayed enhanced affinity for heparan, as opposed to their low-passage counterparts. Comparative sequence analysis revealed the fixation of positively charged residues clustered close to the icosahedral 5-fold axes of the virus, at amino acid positions 83-85 in the ßD-ßE loop and 110-112 in the ßF-ßG loop of VP1 upon adaptation to cultured cells. Molecular docking simulations confirmed enhanced binding of heparan sulphate to a model of the adapted SAT1 virus, with the region around VP1 arginine 112 contributing the most to binding. Using this information, eight chimeric field strain mutant viruses were constructed with additional positive charges in repeated clusters on the virion surface. Five of these bound heparan sulphate with expanded cell tropism, which should facilitate large-scale propagation. However, only positively charged residues at position 110-112 of VP1 enhanced infectivity of BHK-21 cells. The symmetrical arrangement of even a single amino acid residue in the FMD virion is a powerful strategy enabling the virus to generate novel receptor binding and alternative host-cell interactions.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Modelos Moleculares , Vírion/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Cricetinae , Heparitina Sulfato/metabolismo , Simulação de Acoplamento Molecular/métodos , Receptores Virais/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887025

RESUMO

Viroids are the smallest plant pathogens, consisting of a single-stranded circular RNA of less than 500 ribonucleotides in length. Despite their noncoding nature, viroids elicit disease symptoms in many economically important plant hosts, and are, thus, a class of pathogens of great interest. How these viroids establish disease within host plants, however, is not yet fully understood. Recent transcriptomic studies have revealed that viroid infection influences the expression of genes in several pathways and processes in plants, including defence responses, phytohormone signalling, cell wall modification, photosynthesis, secondary metabolism, transport, gene expression and protein modification. There is much debate about whether affected pathways signify a plant response to viroid infection, or are associated with the appearance of disease symptoms in these interactions. In this review, we consolidate the findings of viroid-host transcriptome studies to provide an overview of trends observed in the data. When considered together, changes in the gene expression of different hosts upon viroid infection reveal commonalities and differences in diverse interactions. Here, we discuss whether trends in host gene expression can be correlated to plant defence or disease development during viroid infection, and highlight avenues for future research in this field.


Assuntos
Viroides , Doenças das Plantas/genética , Plantas/genética , RNA Viral , Transcriptoma , Viroides/genética
3.
Arch Virol ; 165(5): 1079-1087, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32144546

RESUMO

Epizootic hemorrhagic disease virus (EHDV) is a member of the genus Orbivirus, family Reoviridae, and has a genome consisting of 10 linear double-stranded (ds) RNA segments. The current reverse genetics system (RGS) for engineering the EHDV genome relies on the use of in vitro-synthesized capped viral RNA transcripts. To obtain more-efficient and simpler RGSs for EHDV, we developed an entirely DNA (plasmid or PCR amplicon)-based RGS for viral rescue. This RGS enabled the rescue of infectious EHDV from BSR-T7 cells following co-transfection with seven helper viral protein expression plasmids and 10 cDNA rescue plasmids or PCR amplicons representing the EHDV genome. Furthermore, we optimized the DNA-based systems and confirmed that some of the helper expression plasmids were not essential for the recovery of infectious EHDV. Thus, DNA-based RGSs may offer a more efficient method of recombinant virus recovery and accelerate the study of the biological characteristics of EHDV and the development of novel vaccines.


Assuntos
Vírus da Doença Hemorrágica Epizoótica/genética , Genética Reversa/métodos , Virologia/métodos , Animais , Linhagem Celular , DNA Complementar/genética , Vírus da Doença Hemorrágica Epizoótica/crescimento & desenvolvimento , Mesocricetus , Plasmídeos , RNA Viral/genética , Recombinação Genética , Infecções por Reoviridae/virologia
4.
Can J Microbiol ; 62(11): 893-903, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27510302

RESUMO

Quorum sensing (QS) plays an important role in the regulation of bacteria-host interactions and ecological fitness in many bacteria. In this study, 2 luxI/R homologs, namely eanI/eanR and rhlI/rhlR, were identified in the genome sequence of Pantoea ananatis LMG 2665T. To determine a role for these luxI/R homologs in pathogenicity and biofilm formation, mutant bacterial strains lacking either eanI/R or rhlI/R and both of these homologs were generated. The results indicated that both the RhlI/R and EanI/R systems are required for pathogenicity and biofilm formation in strain LMG 2665T. This is the first study to characterize the biological significance of the RhlI/R QS system in P. ananatis.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Pantoea/genética , Pantoea/patogenicidade , Percepção de Quorum/genética , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição/genética , Genoma Bacteriano/genética , Mutação/genética
5.
Mol Plant Microbe Interact ; 28(4): 420-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25411959

RESUMO

Type VI secretion systems (T6SSs) are a class of macromolecular machines that are recognized as an important virulence mechanism in several gram-negative bacteria. The genome of Pantoea ananatis LMG 2665(T), a pathogen of pineapple fruit and onion plants, carries two gene clusters whose predicted products have homology with T6SS-associated gene products from other bacteria. Nothing is known regarding the role of these T6SS-1 and T6SS-3 gene clusters in the biology of P. ananatis. Here, we present evidence that T6SS-1 plays an important role in the pathogenicity of P. ananatis LMG 2665(T) in onion plants, while a strain lacking T6SS-3 remains as pathogenic as the wild-type strain. We also investigated the role of the T6SS-1 system in bacterial competition, the results of which indicated that several bacteria compete less efficiently against wild-type LMG 2665(T) than a strain lacking T6SS-1. Additionally, we demonstrated that these phenotypes of strain LMG 2665(T) were reliant on the core T6SS products TssA and TssD (Hcp), thus indicating that the T6SS-1 gene cluster encodes a functioning T6SS. Collectively, our data provide the first evidence demonstrating that the T6SS-1 system is a virulence determinant of P. ananatis LMG 2665(T) and plays a role in bacterial competition.


Assuntos
Sistemas de Secreção Bacterianos/genética , Interações Hospedeiro-Patógeno/genética , Pantoea/genética , Pantoea/patogenicidade , Doenças das Plantas/microbiologia , Virulência/genética , Sistemas de Secreção Bacterianos/fisiologia , Técnicas de Inativação de Genes , Genes Bacterianos , Interações Hospedeiro-Patógeno/fisiologia , Família Multigênica , Mutação , Cebolas/microbiologia , Pantoea/fisiologia , Virulência/fisiologia
6.
J Gen Virol ; 96(Pt 7): 1811-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25783475

RESUMO

Infection of cultured mammalian cells with African horse sickness virus (AHSV) is known to induce cell death. To date, the trigger(s) of this response, the apoptotic pathways activated during AHSV infection and the functional consequences of apoptosis on the virus replication cycle have yet to be characterized. This study demonstrated that extracellular treatment of BHK-21 cells with both of the AHSV4 outer capsid proteins, VP2 and VP5, was sufficient to trigger apoptosis. Whether steps in AHSV4 replication subsequent to viral attachment were required for AHSV4-induced apoptosis was also investigated. Apoptosis was induced in BHK-21 cells infected with UV-inactivated AHSV4 and in ribavirin-treated cells infected with AHSV4. However, both AHSV4- and VP2/VP5-stimulated apoptotic responses were inhibited in the presence of the endosomal acidification inhibitors ammonium chloride and chloroquine. These results indicated that uncoating of AHSV4 virions, but not viral transcription or subsequent steps in viral replication, was required for AHSV4 to induce apoptosis in BHK-21 cells. Furthermore, this study showed that both the extrinsic (caspase-8) and intrinsic (caspase-9) apoptotic pathways were induced following AHSV4 infection. The inhibition of caspase activity in AHSV4-infected cells did not diminish AHSV4 replication, but reduced the release and dissemination of progeny viral particles. Taken together, the data indicated that uncoating of AHSV virions was required for apoptosis induction, and that apoptosis enhanced virus spread and release.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Apoptose , Interações Hospedeiro-Patógeno , Desenvelopamento do Vírus , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Cricetinae
7.
J Virol ; 88(15): 8307-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829347

RESUMO

UNLABELLED: Monoclonal-antibody (MAb)-resistant mutants were used to map antigenic sites on foot-and-mouth disease virus (FMDV), which resulted in the identification of neutralizing epitopes in the flexible ßG-ßH loop in VP1. For FMDV SAT2 viruses, studies have shown that at least two antigenic sites exist. By use of an infectious SAT2 cDNA clone, 10 structurally exposed and highly variable loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of SAT2/Zimbabwe (ZIM)/7/83 (topotype II) and replaced with the corresponding regions of SAT2/Kruger National Park (KNP)/19/89 (topotype I). Virus neutralization assays using convalescent-phase antisera raised against the parental virus, SAT2/ZIM/7/83, indicated that the mutant virus containing the TQQS-to-ETPV mutation in the N-terminal part of the ßG-ßH loop of VP1 showed not only a significant increase in the neutralization titer but also an increase in the index of avidity to the convalescent-phase antisera. Furthermore, antigenic profiling of the epitope-replaced and parental viruses with nonneutralizing SAT2-specific MAbs led to the identification of two nonneutralizing antigenic regions. Both regions were mapped to incorporate residues 71 to 72 of VP2 as the major contact point. The binding footprint of one of the antigenic regions encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 48 to 50 of VP1, and the second antigenic region encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 84 to 86 and 109 to 11 of VP1. This is the first time that antigenic regions encompassing residues 71 to 72 of VP2 have been identified on the capsid of a SAT2 FMDV. IMPORTANCE: Monoclonal-antibody-resistant mutants have traditionally been used to map antigenic sites on foot-and-mouth disease virus (FMDV). However, for SAT2-type viruses, which are responsible for most of the FMD outbreaks in Africa and are the most varied of all seven serotypes, only two antigenic sites have been identified. We have followed a unique approach using an infectious SAT2 cDNA genome-length clone. Ten structurally surface-exposed, highly varied loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of the SAT2/ZIM/7/83 virus. These regions were replaced with the corresponding regions of an antigenically disparate virus, SAT2/KNP/19/89. Antigenic profiling of the epitope-replaced and parental viruses with SAT2-specific MAbs led to the identification of two unique antibody-binding footprints on the SAT2 capsid. In this report, evidence for the structural engineering of antigenic sites of a SAT2 capsid to broaden cross-reactivity with antisera is provided.


Assuntos
Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Epitopos Imunodominantes/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Bovinos , Linhagem Celular , Mapeamento de Epitopos , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/isolamento & purificação , Epitopos Imunodominantes/genética , Camundongos Endogâmicos BALB C , Testes de Neutralização , Zimbábue
8.
Microbiol Resour Announc ; 13(6): e0022324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38771059

RESUMO

Bluetongue disease in endemic areas is predominantly controlled through vaccination with live-attenuated vaccines. Sequencing of the original master seed viruses used in the production of Onderstepoort Biological Products vaccine was conducted. Nucleotide identities of 82.97%-100% were obtained for all sequences when compared to South African reference strains.

9.
Mol Plant Microbe Interact ; 25(4): 546-56, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22168446

RESUMO

Type IV pili are virulence factors in various bacteria. Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Although type IVa pili have been implicated in the virulence of Ralstonia solanacearum, type IVb pili have not previously been described in this plant pathogen. Here, we report the characterization of two distinct tad loci in the R. solanacearum genome. The tad genes encode functions necessary for biogenesis of the Flp subfamily of type IVb pili initially described for the periodontal pathogen Aggregatibacter actinomycetemcomitans. To determine the role of the tad loci in R. solanacearum virulence, we mutated the tadA2 gene located in the megaplasmid that encodes a predicted NTPase previously reported to function as the energizer for Flp pilus biogenesis. Characterization of the tadA2 mutant revealed that it was not growth impaired in vitro or in planta, produced wild-type levels of exopolysaccharide galactosamine, and exhibited swimming and twitching motility comparable with the wild-type strain. However, the tadA2 mutant was impaired in its ability to cause wilting of potato plants. This is the first report where type IVb pili in a phytopathogenic bacterium contribute significantly to plant pathogenesis.


Assuntos
Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Solanum tuberosum , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , DNA Bacteriano/genética , Proteínas de Fímbrias/genética , Dados de Sequência Molecular , Mutação , Ralstonia solanacearum/metabolismo , Fatores de Tempo , Virulência
10.
Viruses ; 14(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36298748

RESUMO

African horse sickness is a deadly and highly infectious disease of equids, caused by African horse sickness virus (AHSV). AHSV is one of the most economically important members of the Orbivirus genus. AHSV is transmitted by the biting midge, Culicoides, and therefore replicates in both insect and mammalian cell types. Structural protein VP7 is a highly conserved major core protein of orbiviruses. Unlike any other orbivirus VP7, AHSV VP7 is highly insoluble and forms flat hexagonal crystalline particles of unknown function in AHSV-infected cells and when expressed in mammalian or insect cells. To examine the role of AHSV VP7 in virus replication, a plasmid-based reverse genetics system was used to generate a recombinant AHSV that does not form crystalline particles. We characterised the role of VP7 crystalline particle formation in AHSV replication in vitro and found that soluble VP7 interacted with viral proteins VP2 and NS2 similarly to wild-type VP7 during infection. Interestingly, soluble VP7 was found to form uncharacteristic tubule-like structures in infected cells which were confirmed to be as a result of unique VP7-NS1 colocalisation. Furthermore, it was found that VP7 crystalline particles play a role in AHSV release and yield. This work provides insight into the role of VP7 aggregation in AHSV cellular pathogenesis and contributes toward the understanding of the possible effects of viral protein aggregation in other human virus-borne diseases.


Assuntos
Vírus da Doença Equina Africana , Ceratopogonidae , Animais , Humanos , Vírus da Doença Equina Africana/genética , Agregados Proteicos , Replicação Viral , Proteínas do Core Viral/metabolismo , Ceratopogonidae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Mamíferos
11.
J Gen Virol ; 92(Pt 4): 849-59, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21177923

RESUMO

Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Emulsões/administração & dosagem , Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Óleos/administração & dosagem , Suínos , Doenças dos Suínos/imunologia , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética
12.
J Vasc Surg ; 54(1): 249-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21315547

RESUMO

Carotid artery stenting is usually performed by a femoral approach. When the patient's anatomy forbids this or other distal access to the carotids, a direct access by percutaneous puncture may be used. We present two cases in which a successful stenting of the carotids with the use of a cerebral protection device was performed.


Assuntos
Angioplastia com Balão/instrumentação , Angioplastia com Balão/métodos , Artéria Carótida Primitiva , Estenose das Carótidas/terapia , Punções , Stents , Idoso , Angiografia Digital , Artéria Carótida Primitiva/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Dispositivos de Proteção Embólica , Feminino , Humanos , Masculino , Radiografia Intervencionista , Resultado do Tratamento
13.
PLoS Comput Biol ; 6(12): e1001027, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21151576

RESUMO

Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence--by controlling for phylogenetic structure--for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease.


Assuntos
Variação Antigênica/genética , Biologia Computacional/métodos , Vírus da Febre Aftosa/genética , Modelos Imunológicos , Análise de Sequência de RNA/métodos , África Austral , Animais , Anticorpos Neutralizantes/sangue , Búfalos/virologia , Proteínas do Capsídeo/genética , Bovinos/virologia , Análise por Conglomerados , Simulação por Computador , Epitopos/genética , Febre Aftosa/virologia , Filogenia , Alinhamento de Sequência , Vacinas Virais
14.
Eur Radiol ; 21(12): 2647-56, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21822948

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of gelified ethanol, a newly developed sclerosing agent for slow-flow vascular malformations. METHODS: Seventy-nine sclerotherapy procedures were performed on 44 patients with 37 venous malformations, 2 glomuvenous malformations, 2 lymphatic malformations, 2 lymphatico-venous malformations, and 1 Klippel-Trenaunay syndrome. The median injected volume was 1.00 mL/site of injection. Effects of sclerotherapy on pain, functional and cosmetic disturbance were statistically evaluated with a final result score. Local and systemic complications were recorded. RESULTS: The mean Visual Analogue Scores were 5.20 ± 2.81 before and 1.52 ± 1.25 after treatment (p < 0.001). Functional and aesthetic improvement was achieved in 31/35 patients (89%) and in 33/41 (80%), respectively. Minor local side effects included necrosis with or without issue of ethylcellulose, palpable residue, and hematoma. No systemic side-effects occurred. CONCLUSION: Per mL used, radio-opaque gelified ethanol is at least as effective as absolute ethanol. No systemic complication was observed, as only a low dose of ethanol was injected. Indications for sclerotherapy can be widened to areas with higher risk for local side effects (hands and periocular region), as ethanol is trapped in the lesion. Careful injection procedure is though necessary, because only a limited amount of ethylcellulose can be used per puncture. Key Points • Development of a new sclerosing agent for venous malformations. • Interesting novel way to deliver alcohol to slow-flow vascular malformations. • Alcohol-based with less local and systemic side-effects.


Assuntos
Celulose/análogos & derivados , Etanol/uso terapêutico , Soluções Esclerosantes/uso terapêutico , Escleroterapia , Malformações Vasculares/terapia , Veias/anormalidades , Adolescente , Adulto , Idoso , Celulose/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Síndrome de Klippel-Trenaunay-Weber/terapia , Vasos Linfáticos/anormalidades , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Escleroterapia/métodos , Resultado do Tratamento , Malformações Vasculares/diagnóstico , Veias/patologia , Adulto Jovem
15.
Arch Virol ; 156(4): 711-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21193936

RESUMO

The VP5 outer capsid protein of African horse sickness virus (AHSV) is cytotoxic when expressed in Spodoptera frugiperda (Sf-9) cells. Secondary structure analysis of the VP5 amino acid sequence of AHSV-9 identified two N-terminal amphipathic α-helices within the first 43 amino acids. Baculovirus expression of N- and C-terminal truncated VP5 proteins in Sf-9 cells indicated that the N-terminal 43 amino acids correlated with low levels of protein expression and with increased membrane permeabilization and cytotoxicity. Exogenous addition of chemically synthesized VP5 peptides indicated that both N-terminal amphipathic α-helices are required for membrane permeabilization of Sf-9 cells. These findings suggest that AHSV VP5 is a membrane-destabilizing protein.


Assuntos
Vírus da Doença Equina Africana/patogenicidade , Proteínas do Capsídeo/metabolismo , Permeabilidade da Membrana Celular , Fatores de Virulência/metabolismo , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Estrutura Secundária de Proteína , Spodoptera/virologia , Fatores de Virulência/química , Fatores de Virulência/genética
16.
Vaccines (Basel) ; 9(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34579233

RESUMO

The effective control of foot-and-mouth disease (FMD) relies strongly on the separation of susceptible and infected livestock or susceptible livestock and persistently infected wildlife, vaccination, and veterinary sanitary measures. Vaccines affording protection against multiple serotypes for longer than six months and that are less reliant on the cold chain during handling are urgently needed for the effective control of FMD in endemic regions. Although much effort has been devoted to improving the immune responses elicited through the use of modern adjuvants, their efficacy is dependent on the formulation recipe, target species and administration route. Here we compared and evaluated the efficacy of two adjuvant formulations in combination with a structurally stabilized SAT2 vaccine antigen, designed to have improved thermostability, antigen shelf-life and longevity of antibody response. Protection mediated by the Montanide ISA 206B-adjuvanted or Quil-A Saponin-adjuvanted SAT2 vaccines were comparable. The Montanide ISA 206B-adjuvanted vaccine elicited a higher SAT2 neutralizing antibody response and three times higher levels of systemic IFN-γ responses at 14- and 28-days post-vaccination (dpv) were observed compared to the Quil-A Saponin-adjuvanted vaccine group. Interestingly, serum antibodies from the immunized animals reacted similarly to the parental vaccine virus and viruses containing mutations in the VP2 protein that simulate antigenic drift in nature.

17.
Crit Rev Microbiol ; 36(4): 318-39, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20879848

RESUMO

Waterborne microbial diseases are escalating worldwide increasing the need for powerful and sensitive diagnostics tools. Molecular methodologies, including immunological and nucleic acid-based methods, have only recently been applied in the water sector. Advances in nanotechnology and nanomaterials have opened the door for the development of new diagnostic tools with increased sensitivity and speed, and reduced cost and labor. Quantum dots, flo dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, nanowires, and nanocantilevers, with their unique optical and physical properties, have already been applied in nanodiagnostics. Nanobiotechnology, once remaining technical and practical problems has been addressed, will play an important role in the detection of microbial pathogens.


Assuntos
Bactérias/isolamento & purificação , Nanotecnologia/métodos , Nanotecnologia/tendências , Microbiologia da Água , Monitoramento Ambiental , Técnicas de Diagnóstico Molecular , Nanopartículas , Nanoestruturas , Nanotubos de Carbono , Nanofios , Saúde Pública , Pontos Quânticos
18.
AMB Express ; 10(1): 2, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912326

RESUMO

The seven serotypes of foot-and-mouth disease virus (FMDV) differ on the surface exposed regions on the VP1, 2 and 3 proteins. Amongst the three, the VP1 protein has been produced the most for use in serotyping assays for some of the Euro-Asian serotypes. In this study the VP1 protein of the FMDV SAT2/ZIM/7/83 was expressed in Escherichia coli BL21 cells in Luria broth and EnPresso® B media in shake flasks. Production was further developed and the VP1 protein was produced at 2.15 g L-1 in fed-batch fermentations at 2 L scale. The protein formed insoluble inclusion bodies that were isolated, denatured and refolded. When tested in ELISA, the protein was found to be highly reactive with serum from a SAT2 vaccinated guinea pig, and not reactive to SAT1 and SAT3 antisera. These results open avenues to evaluate recombinantly expressed VP1 proteins for differentiation of the three Southern African Territories serotypes of FMDV that co-occur in Southern and East Africa. In addition, this could mitigate the need for employing virus as reagent, or having to raise reagent antibodies.

19.
Vet Microbiol ; 243: 108614, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273026

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals, which severely decreases livestock productivity. FMD virus (FMDV), the causative agent, initiates infection by interaction with integrin cellular receptors on pharyngeal epithelium cells, causing clinical signs one to four days after transmission to a susceptible host. However, some Southern African Territories (SAT) viruses have been reported to cause mild or subclinical infections that may go undiagnosed in field conditions and are likely to be more common than previously expected. The studies presented here demonstrate that not all SAT2 viruses are equally virulent in cattle. The two SAT2 viruses, ZIM/5/83 and ZIM/7/83, were both highly attenuated in cattle, as evidenced by the mild clinical signs observed after needle challenge, while two incongruent SAT2 viruses showed significantly different clinical signs in challenged cattle. We then explored the ability of the SAT2 viruses to infect different cell types with defined receptors that are utilised by FMDV and found differences in their ability to lyse cells in culture and to compete in a controlled cell culture environment. The population sequence variation between ZIM/5/83 and ZIM/7/83 revealed multiple sites of single nucleotide variants of low frequency between the predominant virus populations, as could be expected from the genome of an RNA virus. An assessment of the biophysical stability of SAT2 virions during acidification indicated that the SAT2 virus EGY/09/12 was more resilient to acidification than the ZIM/5/83 and ZIM/7/83 viruses; however, whether this difference relates to differences in virulence in vivo is unclear. This study is a consolidated view of the key findings of SAT2 viruses studied over a 14-year period involving many different experiments.


Assuntos
Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , Variação Genética , Fenótipo , África Austral , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Linhagem Celular , Cricetinae , Vírus da Febre Aftosa/classificação , Aptidão Genética , Concentração de Íons de Hidrogênio , Gado/virologia , Polimorfismo de Nucleotídeo Único , Sorogrupo , Temperatura
20.
Front Vet Sci ; 7: 568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102544

RESUMO

Foot-and-mouth disease (FMD) continues to be a major burden for livestock owners in endemic countries and a continuous threat to FMD-free countries. The epidemiology and control of FMD in Africa is complicated by the presence of five clinically indistinguishable serotypes. Of these the Southern African Territories (SAT) type 3 has received limited attention, likely due to its restricted distribution and it being less frequently detected. We investigated the intratypic genetic variation of the complete P1 capsid-coding region of 22 SAT3 viruses and confirmed the geographical distribution of five of the six SAT3 topotypes. The antigenic cross-reactivity of 12 SAT3 viruses against reference antisera was assessed by performing virus neutralization assays and calculating the r1-values, which is a ratio of the heterologous neutralizing titer to the homologous neutralizing titer. Interestingly, cross-reactivity between the SAT3 reference antisera and many SAT3 viruses was notably high (r1-values >0.3). Moreover, some of the SAT3 viruses reacted more strongly to the reference sera compared to the homologous virus (r1-values >1). An increase in the avidity of the reference antisera to the heterologous viruses could explain some of the higher neutralization titers observed. Subsequently, we used the antigenic variability data and corresponding genetic and structural data to predict naturally occurring amino acid positions that correlate with antigenic changes. We identified four unique residues within the VP1, VP2, and VP3 proteins, associated with a change in cross-reactivity, with two sites that change simultaneously. The analysis of antigenic variation in the context of sequence differences is critical for both surveillance-informed selection of effective vaccines and the rational design of vaccine antigens tailored for specific geographic localities, using reverse genetics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa