Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(7): 636, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902424

RESUMO

In the Southern Central Highlands of Vietnam, droughts occur more frequently, causing significant damage and impacting the region's socio-economic development. During the dry season, rivers, streams, and reservoirs often face limited water availability, exacerbated in recent years by increasing drought severity. Recognizing the escalating severity of droughts, the study offers a novel contribution by conducting a comprehensive analysis of surface water resource distribution in Lam Dong province, focusing on assessing water demand for agricultural production, a crucial factor in ensuring sustainable crop growth. Two scenarios, Current-2020 (SC1) and Climate Change-2025 (SC2), are simulated, with SC2 based on climate change and sea level rise scenarios provided by the Ministry of Natural Resources and Environment (MONRE). These scenarios are integrated into the MIKE-NAM and MIKE-HYDRO basin models, allowing for a thorough assessment of the water balance of Lam Dong province. Furthermore, the study utilizes the Keetch-Byram Drought Index (KBDI) to measure drought severity, revealing prevalent dry and moderately droughty conditions in highland districts with rainfall frequency ranging from 50 to 85%. Severe drought conditions occur with a rainfall frequency of 95%, indicating an increased frequency and geographic scope of severe droughts. Additionally, the study highlights that under abnormally dry conditions, water demand for the winter-spring crop is consistently met at 100%, decreasing to 85%, 80%, and less than 75% for moderate, severe, and extreme droughts, respectively. These findings offer insights into future drought conditions in the Lam Dong province and their potential impact on irrigation capacity, crucial for adaptation strategies.


Assuntos
Mudança Climática , Secas , Vietnã , Monitoramento Ambiental , Estações do Ano , Abastecimento de Água/estatística & dados numéricos , Agricultura
2.
Environ Monit Assess ; 194(Suppl 2): 767, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255502

RESUMO

Ca Mau and Kien Giang, the two provinces of the Mekong Delta bordering the Gulf of Thailand, are facing major environmental challenges affecting the agriculture and aquaculture sectors upon which many livelihoods in this region depend on. This study maps the suitability of these two provinces for paddy rice cultivation and shrimp farming according to soil characteristics and current and future environmental conditions for variables found to significantly influence the yield of those two sectors, i.e., the level of saltwater intrusion, water availability for rainfed agriculture, and the length of the growing period. Future environmental conditions were simulated using the MIKE 11 hydrodynamic model forced by four hydrodynamic scenarios, each one representing different extents of saltwater intrusion during both the dry and rainy seasons, while also considering the availability of water resources for rainfed agriculture. The suitability zoning was performed using a GIS-based analytic hierarchy process (AHP) approach, resulting in the categorisation of the land according to four suitability levels for each sector. The analysis reveals that paddy rice cultivation will become more suitable to Kien Giang province while shrimp farming will be more suitable to Ca Mau province if the simulated future environmental conditions materialise. A suitability analysis is essential for optimal utilisation of the land. The approach presented in this study will inform the regional economic development master plan and provide guidance to other delta regions experiencing severe environmental changes and wishing to consider potential future climatic and sea level changes, and their associated impacts, in their land use planning.


Assuntos
Oryza , Animais , Monitoramento Ambiental , Aquicultura , Agricultura/métodos , Solo , Crustáceos , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa