Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(2): 831-848, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38600022

RESUMO

Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.


Assuntos
Arabidopsis , Estresse do Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo
2.
Am J Bot ; 107(11): 1597-1605, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33225462

RESUMO

PREMISE: Boreal and northern temperate forest trees possess finely tuned mechanisms of dormancy, which match bud phenology with local seasonality. After winter dormancy, the accumulation of chilling degree days (CDD) required for rest completion before the accumulation of growing degree days (GDD) during quiescence is an important step in the transition to spring bud flush. While bud flush timing is known to be genetically variable within species, few studies have investigated variation among genotypes from different climates in response to variable chilling duration. METHODS: We performed a controlled environment study using dormant cuttings from 10 genotypes of Populus balsamifera, representing a broad latitudinal gradient (43-58°N). We exposed cuttings to varying amounts of chilling (0-10 weeks) and monitored subsequent GDD to bud flush at a constant forcing temperature. RESULTS: Chilling duration strongly accelerated bud flush timing, with increasing CDD resulting in fewer GDD to flush. Genotypic variation for bud flush was significant and stratified by latitude, with southern genotypes requiring more GDD to flush than northern genotypes. The latitudinal cline was pronounced under minimal chilling, whereas genotypic variation in GDD to bud flush converged as CDD increased. CONCLUSIONS: We demonstrate that increased chilling lessens GDD to bud flush in a genotype-specific manner. Our results emphasize that latitudinal clines in bud flush reflect a critical genotype-by-environment interaction, whereby differences in bud flush between southern vs. northern genotypes depend on chilling. Our results suggest selection has shaped chilling requirements and depth of rest as an adaptive strategy to avoid precocious flush in climates with midwinter warming.


Assuntos
Populus , Clima , Variação Genética , Populus/genética , Estações do Ano , Árvores
3.
Nat Plants ; 9(8): 1333-1346, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563456

RESUMO

Excessive accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, which is an underlying cause of major crop losses and devastating human conditions. ER proteostasis surveillance is mediated by the conserved master regulator of the unfolded protein response (UPR), Inositol Requiring Enzyme 1 (IRE1), which determines cell fate by controlling pro-life and pro-death outcomes through as yet largely unknown mechanisms. Here we report that Arabidopsis IRE1 determines cell fate in ER stress by balancing the ubiquitin-proteasome system (UPS) and UPR through the plant-unique E3 ligase, PHOSPHATASE TYPE 2CA (PP2CA)-INTERACTING RING FINGER PROTEIN 1 (PIR1). Indeed, PIR1 loss leads to suppression of pro-death UPS and the lethal phenotype of an IRE1 loss-of-function mutant in unresolved ER stress in addition to activating pro-survival UPR. Specifically, in ER stress, PIR1 loss stabilizes ABI5, a basic leucine zipper (bZIP) transcription factor, that directly activates expression of the critical UPR regulator gene, bZIP60, triggering transcriptional cascades enhancing pro-survival UPR. Collectively, our results identify new cell fate effectors in plant ER stress by showing that IRE1's coordination of cell death and survival hinges on PIR1, a key pro-death component of the UPS, which controls ABI5, a pro-survival transcriptional activator of bZIP60.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse Proteotóxico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/metabolismo
4.
Evol Appl ; 13(9): 2190-2205, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005218

RESUMO

Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo-genetic history can have immediate conservation implications. We used a whole-exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high-elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop "sky islands." Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome-derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa