Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Biol Chem ; 293(41): 15855-15866, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30154241

RESUMO

Mutations in ABC subfamily C member 6 (ABCC6) transporter are associated with pseudoxanthoma elasticum (PXE), a disease resulting in ectopic mineralization and affecting multiple tissues. A growing number of mutations have been identified in individuals with PXE. For most of these variants, no mechanistic information is available regarding their role in normal and pathophysiologies. To assess how PXE-associated mutations alter ABCC6 biosynthesis and structure, we biophysically and biochemically evaluated the N-terminal nucleotide-binding domain. A high-resolution X-ray structure of nucleotide-binding domain 1 (NBD1) of human ABCC6 was obtained at 2.3 Å that provided a template on which to evaluate PXE-causing mutations. Biochemical analysis of mutations in this domain indicated that multiple PXE-causing mutations altered its structural properties. Analyses of the full-length protein revealed a strong correlation between the alterations in NBD properties and the processing and expression of ABCC6. These results suggest that a significant fraction of PXE-associated mutations located in NBD1 causes changes in its structural properties and that these mutation-induced alterations directly affect the maturation of the full-length ABCC6 protein.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Pseudoxantoma Elástico/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Glicosilação , Células HEK293 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Conformação Proteica , Domínios Proteicos/genética , Alinhamento de Sequência
2.
J Biol Chem ; 292(5): 1559-1572, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994049

RESUMO

ABC transporters are polytopic membrane proteins that utilize ATP binding and hydrolysis to facilitate transport across biological membranes. Forty-eight human ABC transporters have been identified in the genome, and the majority of these are linked to heritable disease. Mutations in the ABCC6 (ATP binding cassette transporter C6) ABC transporter are associated with pseudoxanthoma elasticum, a disease of altered elastic properties in multiple tissues. Although ∼200 mutations have been identified in pseudoxanthoma elasticum patients, the underlying structural defects associated with the majority of these are poorly understood. To evaluate the structural consequences of these missense mutations, a combination of biophysical and cell biological approaches were applied to evaluate the local and global folding and assembly of the ABCC6 protein. Structural and bioinformatic analyses suggested that a cluster of mutations, representing roughly 20% of the patient population with identified missense mutations, are located in the interface between the transmembrane domain and the C-terminal nucleotide binding domain. Biochemical and cell biological analyses demonstrate these mutations influence multiple steps in the biosynthetic pathway, minimally altering local domain structure but adversely impacting ABCC6 assembly and trafficking. The differential impacts on local and global protein structure are consistent with hierarchical folding and assembly of ABCC6. Stabilization of specific domain-domain interactions via targeted amino acid substitution in the catalytic site of the C-terminal nucleotide binding domain restored proper protein trafficking and cell surface localization of multiple biosynthetic mutants. This rescue provides a specific mechanism by which chemical chaperones could be developed for the correction of ABCC6 biosynthetic defects.


Assuntos
Mutação de Sentido Incorreto , Multimerização Proteica , Pseudoxantoma Elástico , Substituição de Aminoácidos , Células HEK293 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Domínios Proteicos , Estabilidade Proteica , Transporte Proteico/genética , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/metabolismo
3.
J Biol Chem ; 292(34): 14147-14164, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28655774

RESUMO

Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Mutação Puntual , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Catatonia , Biologia Computacional , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Estabilidade Enzimática , Deleção de Genes , Células HEK293 , Humanos , Fusão de Membrana , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura de Transição
4.
J Biol Chem ; 291(4): 2004-2017, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26627832

RESUMO

A newly identified pathway for selective degradation of the common mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del, is initiated by binding of the small heat shock protein, Hsp27. Hsp27 collaborates with Ubc9, the E2 enzyme for protein SUMOylation, to selectively degrade F508del CFTR via the SUMO-targeted ubiquitin E3 ligase, RNF4 (RING finger protein 4) (1). Here, we ask what properties of CFTR are sensed by the Hsp27-Ubc9 pathway by examining the ability of NBD1 (locus of the F508del mutation) to mimic the disposal of full-length (FL) CFTR. Similar to FL CFTR, F508del NBD1 expression was reduced 50-60% by Hsp27; it interacted preferentially with the mutant and was modified primarily by SUMO-2. Mutation of the consensus SUMOylation site, Lys(447), obviated Hsp27-mediated F508del NBD1 SUMOylation and degradation. As for FL CFTR and NBD1 in vivo, SUMO modification using purified components in vitro was greater for F508del NBD1 versus WT and for the SUMO-2 paralog. Several findings indicated that Hsp27-Ubc9 targets the SUMOylation of a transitional, non-native conformation of F508del NBD1: (a) its modification decreased as [ATP] increased, reflecting stabilization of the nucleotide-binding domain by ligand binding; (b) a temperature-induced increase in intrinsic fluorescence, which reflects formation of a transitional NBD1 conformation, was followed by its SUMO modification; and (c) introduction of solubilizing or revertant mutations to stabilize F508del NBD1 reduced its SUMO modification. These findings indicate that the Hsp27-Ubc9 pathway recognizes a non-native conformation of mutant NBD1, which leads to its SUMO-2 conjugation and degradation by the ubiquitin-proteasome system.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Choque Térmico HSP27/genética , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação
5.
Infect Immun ; 83(7): 2907-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939509

RESUMO

The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens.


Assuntos
Toxinas Bacterianas/metabolismo , Células Epiteliais/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Serratia marcescens/enzimologia , Toxinas Bacterianas/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Infecções Oculares Bacterianas/microbiologia , Humanos , Peptídeo Hidrolases/genética , Infecções por Serratia/microbiologia , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Biochemistry ; 53(41): 6452-62, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25232897

RESUMO

Self-assembling proteins represent potential scaffolds for the organization of enzymatic activities. The alkaline protease repeats-in-toxin (RTX) domain from Pseudomonas aeruginosa undergoes multiple structural transitions in the presence and absence of calcium, a native structural cofactor. In the absence of calcium, this domain is capable of spontaneous, ordered polymerization, producing amyloid-like fibrils and large two-dimensional protein sheets. This polymerization occurs under near-physiological conditions, is rapid, and can be controlled by regulating calcium in solution. Fusion of the RTX domain to a soluble protein results in the incorporation of engineered protein function into these macromolecular assemblies. Applications of this protein sequence in bacterial adherence and colonization and the generation of biomaterials are discussed.


Assuntos
Amiloide/química , Proteínas de Bactérias/química , Cálcio/química , Metaloexopeptidases/química , Modelos Moleculares , Pseudomonas aeruginosa/enzimologia , Fosfatase Alcalina/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/ultraestrutura , Amiloide/genética , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Cálcio/metabolismo , Dicroísmo Circular , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/ultraestrutura , Cinética , Metaloexopeptidases/genética , Metaloexopeptidases/metabolismo , Metaloexopeptidases/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polimerização , Agregação Patológica de Proteínas , Engenharia de Proteínas , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Sequências Repetitivas de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/ultraestrutura
7.
J Physiol ; 592(9): 1931-47, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591578

RESUMO

Cystic fibrosis (CF) is caused by dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). One strategy to restore function to CF mutants is to suppress defects in CFTR processing and function using revertant mutations. Here, we investigate the effects of the revertant mutations G550E and 4RK (the simultaneous disruption of four arginine-framed tripeptides (AFTs): R29K, R516K, R555K and R766K) on the CF mutant G551D, which impairs severely channel gating without altering protein processing and which affects a residue in the same α-helix as G550 and R555. Both G550E and 4RK augmented strongly CFTR-mediated iodide efflux from BHK cells expressing G551D-CFTR. To learn how revertant mutations influence G551D-CFTR function, we studied protein processing and single-channel behaviour. Neither G550E nor 4RK altered the expression and maturation of G551D-CFTR protein. By contrast, both revertants had marked effects on G551D-CFTR channel gating, increasing strongly opening frequency, while 4RK also diminished noticeably the duration of channel openings. Because G551D-CFTR channel gating is ATP independent, we investigated whether revertant mutations restore ATP dependence to G551D-CFTR. Like wild-type CFTR, the activity of 4RK-G551D-CFTR varied with ATP concentration, suggesting that 4RK confers some ATP dependence on the G551D-CFTR channel. Thus, the revertant mutations G550E and 4RK alter the gating pattern and ATP dependence of G551D-CFTR without restoring single-channel activity to wild-type levels. Based on their impact on the CF mutants F508del and G551D, we conclude that G550E and 4RK have direct effects on CFTR structure, but that their action on CFTR processing and channel function is CF mutation specific.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Ativação do Canal Iônico/genética , Mutação/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
EMBO J ; 29(1): 263-77, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19927121

RESUMO

The most common cystic fibrosis (CF)-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of Phe508 (DeltaF508) in the first of two nucleotide-binding domains (NBDs). Nucleotide binding and hydrolysis at the NBDs and phosphorylation of the regulatory (R) region are required for gating of CFTR chloride channel activity. We report NMR studies of wild-type and DeltaF508 murine CFTR NBD1 with the C-terminal regulatory extension (RE), which contains residues of the R region. Interactions of the wild-type NBD1 core with the phosphoregulatory regions, the regulatory insertion (RI) and RE, are disrupted upon phosphorylation, exposing a potential binding site for the first coupling helix of the N-terminal intracellular domain (ICD). Phosphorylation of DeltaF508 NBD1 does not as effectively disrupt interactions with the phosphoregulatory regions, which, along with other structural differences, leads to decreased binding of the first coupling helix. These results provide a structural basis by which phosphorylation of CFTR may affect the channel gating of full-length CFTR and expand our understanding of the molecular basis of the DeltaF508 defect.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Animais , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Técnicas In Vitro , Ativação do Canal Iônico , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência
9.
J Biol Chem ; 287(6): 4311-22, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22170064

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that contributes to the mortality of immunocompromised individuals and patients with cystic fibrosis. Pseudomonas infection presents clinical challenges due to its ability to form biofilms and modulate host-pathogen interactions through the secretion of virulence factors. The calcium-regulated alkaline protease (AP), a member of the repeats in toxin (RTX) family of proteins, is implicated in multiple modes of infection. A series of full-length and truncation mutants were purified for structural and functional studies to evaluate the role of Ca(2+) in AP folding and activation. We find that Ca(2+) binding induces RTX folding, which serves to chaperone the folding of the protease domain. Subsequent association of the RTX domain with an N-terminal α-helix stabilizes AP. These results provide a basis for the Ca(2+)-mediated regulation of AP and suggest mechanisms by which Ca(2+) regulates the RTX family of virulence factors.


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Endopeptidases/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Pseudomonas aeruginosa/enzimologia , Estabilidade Enzimática/fisiologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo
10.
J Biol Chem ; 287(39): 32556-65, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22859302

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that significantly contributes to the mortality of patients with cystic fibrosis. Chronic infection by Pseudomonas induces sustained immune and inflammatory responses and damage to the airway. The ability of Pseudomonas to resist host defenses is aided, in part, by secreted proteases, which act as virulence factors in multiple modes of infection. Recent studies suggest that misregulation of protease activity in the cystic fibrosis lung may alter fluid secretion and pathogen clearance by proteolytic activation of the epithelial sodium channel (ENaC). To evaluate the possibility that proteolytic activation of ENaC may contribute to the virulence of Pseudomonas, primary human bronchial epithelial cells were exposed to P. aeruginosa and ENaC function was assessed by short circuit current measurements. Apical treatment with a strain known to express high levels of alkaline protease (AP) resulted in an increase in basal ENaC current and a loss of trypsin-inducible ENaC current, consistent with sustained activation of ENaC. To further characterize this AP-induced ENaC activation, AP was purified, and its folding, activity, and ability to activate ENaC were assessed. AP folding was efficient under pH and calcium conditions thought to exist in the airway surface liquid of normal and cystic fibrosis (CF) lungs. Short circuit measurements of ENaC in polarized monolayers indicated that AP activated ENaC in immortalized cell lines as well as post-transplant, primary human bronchial epithelial cells from both CF and non-CF patients. This activation was mapped to the γ-subunit of ENaC. Based on these data, patho-mechanisms associated with AP in the CF lung are proposed wherein secretion of AP leads to decreased airway surface liquid volume and a corresponding decrease in mucocilliary clearance of pulmonary pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Brônquios/metabolismo , Endopeptidases/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimologia , Animais , Brônquios/microbiologia , Brônquios/patologia , Linhagem Celular , Polaridade Celular , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Camundongos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade
11.
Cell Rep ; 42(3): 112270, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930643

RESUMO

The cystic fibrosis (CF) respiratory tract harbors pathogenic bacteria that cause life-threatening chronic infections. Of these, Pseudomonas aeruginosa becomes increasingly dominant with age and is associated with worsening lung function and declining microbial diversity. We aimed to understand why P. aeruginosa dominates over other pathogens to cause worsening disease. Here, we show that P. aeruginosa responds to dynamic changes in iron concentration, often associated with viral infection and pulmonary exacerbations, to become more competitive via expression of the TseT toxic effector. However, this behavior can be therapeutically targeted using the iron chelator deferiprone to block TseT expression and competition. Overall, we find that iron concentration and TseT expression significantly correlate with microbial diversity in the respiratory tract of people with CF. These findings improve our understanding of how P. aeruginosa becomes increasingly dominant with age in people with CF and provide a therapeutically targetable pathway to help prevent this shift.


Assuntos
Fibrose Cística , Ferro , Humanos , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , Disponibilidade Biológica , Sistema Respiratório , Fibrose Cística/microbiologia
12.
Nat Struct Mol Biol ; 14(8): 738-45, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660831

RESUMO

The regulatory (R) region of the cystic fibrosis transmembrane conductance regulator (CFTR) is intrinsically disordered and must be phosphorylated at multiple sites for full CFTR channel activity, with no one specific phosphorylation site required. In addition, nucleotide binding and hydrolysis at the nucleotide-binding domains (NBDs) of CFTR are required for channel gating. We report NMR studies in the absence and presence of NBD1 that provide structural details for the isolated R region and its interaction with NBD1 at residue-level resolution. Several sites in the R region with measured fractional helical propensity mediate interactions with NBD1. Phosphorylation reduces the helicity of many R-region sites and reduces their NBD1 interactions. This evidence for a dynamic complex with NBD1 that transiently engages different sites of the R region suggests a structural explanation for the dependence of CFTR activity on multiple PKA phosphorylation sites.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Sítios de Ligação , Humanos , Hidrólise , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Dobramento de Proteína , Estrutura Terciária de Proteína
13.
J Invest Dermatol ; 142(4): 1002-1003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35331386

RESUMO

Significant progress has been made in understanding pseudoxanthoma elasticum (PXE), which results from mutations in ABCC6. The low prevalence of PXE and its heterotypic presentation confound genotype-phenotype correlations and the characterization of many identified variants. Kowal et al. (2022) present an in vivo model to characterize and annotate ABCC6 variants, establishing a novel system for allele annotation in the patient population.


Assuntos
Pseudoxantoma Elástico , Alelos , Estudos de Associação Genética , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Mutação de Sentido Incorreto , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/fisiopatologia
14.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106636

RESUMO

Sudden cardiac death (SCD) in patients with heart failure (HF) is allied with an imbalance in reduction and oxidation (redox) signaling in cardiomyocytes; however, the basic pathways and mechanisms governing redox homeostasis in cardiomyocytes are not fully understood. Here, we show that cytochrome b5 reductase 3 (CYB5R3), an enzyme known to regulate redox signaling in erythrocytes and vascular cells, is essential for cardiomyocyte function. Using a conditional cardiomyocyte-specific CYB5R3-knockout mouse, we discovered that deletion of CYB5R3 in male, but not female, adult cardiomyocytes causes cardiac hypertrophy, bradycardia, and SCD. The increase in SCD in CYB5R3-KO mice is associated with calcium mishandling, ventricular fibrillation, and cardiomyocyte hypertrophy. Molecular studies reveal that CYB5R3-KO hearts display decreased adenosine triphosphate (ATP), increased oxidative stress, suppressed coenzyme Q levels, and hemoprotein dysregulation. Finally, from a translational perspective, we reveal that the high-frequency missense genetic variant rs1800457, which translates into a CYB5R3 T117S partial loss-of-function protein, associates with decreased event-free survival (~20%) in Black persons with HF with reduced ejection fraction (HFrEF). Together, these studies reveal a crucial role for CYB5R3 in cardiomyocyte redox biology and identify a genetic biomarker for persons of African ancestry that may potentially increase the risk of death from HFrEF.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Morte Súbita Cardíaca , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Oxirredução , Volume Sistólico
15.
J Biol Chem ; 285(46): 35825-35, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20667826

RESUMO

The deletion of phenylalanine 508 in the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator is directly associated with >90% of cystic fibrosis cases. This mutant protein fails to traffic out of the endoplasmic reticulum and is subsequently degraded by the proteasome. The effects of this mutation may be partially reversed by the application of exogenous osmolytes, expression at low temperature, and the introduction of second site suppressor mutations. However, the specific steps of folding and assembly of full-length cystic fibrosis transmembrane conductance regulator (CFTR) directly altered by the disease-causing mutation are unclear. To elucidate the effects of the ΔF508 mutation, on various steps in CFTR folding, a series of misfolding and suppressor mutations in the nucleotide binding and transmembrane domains were evaluated for effects on the folding and maturation of the protein. The results indicate that the isolated NBD1 responds to both the ΔF508 mutation and intradomain suppressors of this mutation. In addition, identification of a novel second site suppressor of the defect within the second transmembrane domain suggests that ΔF508 also effects interdomain interactions critical for later steps in the biosynthesis of CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Mutação , Fenilalanina/genética , Sítios de Ligação/genética , Western Blotting , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Fenilalanina/química , Fenilalanina/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência , Supressão Genética
16.
Am J Physiol Cell Physiol ; 299(5): C1015-27, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20720181

RESUMO

The number of intermediate-conductance, Ca(2+)-activated K(+) channels (KCa3.1) present at the plasma membrane is deterministic in any physiological response. However, the mechanisms by which KCa3.1 channels are removed from the plasma membrane and targeted for degradation are poorly understood. Recently, we demonstrated that KCa3.1 is rapidly internalized from the plasma membrane, having a short half-life in both human embryonic kidney cells (HEK293) and human microvascular endothelial cells (HMEC-1). In this study, we investigate the molecular mechanisms controlling the degradation of KCa3.1 heterologously expressed in HEK and HMEC-1 cells. Using immunofluorescence and electron microscopy, as well as quantitative biochemical analysis, we demonstrate that membrane KCa3.1 is targeted to the lysosomes for degradation. Furthermore, we demonstrate that either overexpressing a dominant negative Rab7 or short interfering RNA-mediated knockdown of Rab7 results in a significant inhibition of channel degradation rate. Coimmunoprecipitation confirmed a close association between Rab7 and KCa3.1. On the basis of these findings, we assessed the role of the ESCRT machinery in the degradation of heterologously expressed KCa3.1, including TSG101 [endosomal sorting complex required for transport (ESCRT)-I] and CHMP4 (ESCRT-III) as well as VPS4, a protein involved in the disassembly of the ESCRT machinery. We demonstrate that TSG101 is closely associated with KCa3.1 via coimmunoprecipitation and that a dominant negative TSG101 inhibits KCa3.1 degradation. In addition, both dominant negative CHMP4 and VPS4 significantly decrease the rate of membrane KCa3.1 degradation, compared with wild-type controls. These results are the first to demonstrate that plasma membrane-associated KCa3.1 is targeted for lysosomal degradation via a Rab7 and ESCRT-dependent pathway.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Lisossomos/metabolismo , Linhagem Celular , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Lisossomos/ultraestrutura , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
17.
Nat Struct Mol Biol ; 12(1): 10-6, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15619636

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fenilalanina/metabolismo , Dobramento de Proteína , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Mutação/genética , Fenilalanina/genética , Desnaturação Proteica , Estrutura Terciária de Proteína , Temperatura , Termodinâmica
18.
Chem Biol ; 15(1): 62-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18215773

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) Cl(-) channel. F508del, the most frequent CF-causing mutation, disrupts both the processing and function of CFTR. Recently, the crystal structure of the first nucleotide-binding domain of CFTR bearing F508del (F508del-NBD1) was elucidated. Although F508del-NBD1 shows only minor conformational changes relative to that of wild-type NBD1, additional mutations (F494N/Q637R or F429S/F494N/Q637R) were required for domain solubility and crystallization. Here we show that these solubilizing mutations in cis with F508del partially rescue the trafficking defect of full-length F508del-CFTR and attenuate its gating defect. We interpret these data to suggest that the solubilizing mutations utilized to facilitate F508del-NBD1 production also assist folding of full-length F508del-CFTR protein. Thus, the available crystal structure of F508del-NBD1 might correspond to a partially corrected conformation of this domain.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/patologia , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Nucleotídeos/química , Nucleotídeos/genética , Nucleotídeos/metabolismo , Conformação Proteica , Solubilidade , Estereoisomerismo , Fatores de Tempo
19.
Sci Rep ; 8(1): 14025, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232396

RESUMO

Micavibrio aeruginosavorus is an obligate Gram-negative predatory bacterial species that feeds on other Gram-negative bacteria by attaching to the surface of its prey and feeding on the prey's cellular contents. In this study, Serratia marcescens with defined mutations in genes for extracellular cell structural components and secreted factors were used in predation experiments to identify structures that influence predation. No change was measured in the ability of the predator to prey on S. marcescens flagella, fimbria, surface layer, prodigiosin and phospholipase-A mutants. However, higher predation was measured on S. marcescens metalloprotease mutants. Complementation of the metalloprotease gene, prtS, into the protease mutant, as well as exogenous addition of purified serralysin metalloprotease, restored predation to wild type levels. Addition of purified serralysin also reduced the ability of M. aeruginosavorus to prey on Escherichia coli. Incubating M. aeruginosavorus with purified metalloprotease was found to not impact predator viability; however, pre-incubating prey, but not the predator, with purified metalloprotease was able to block predation. Finally, using flow cytometry and fluorescent microscopy, we were able to confirm that the ability of the predator to bind to the metalloprotease mutant was higher than that of the metalloprotease producing wild-type. The work presented in this study shows that metalloproteases from S. marcescens could offer elevated protection from predation.


Assuntos
Bactérias Gram-Negativas/patogenicidade , Metaloproteases/genética , Serratia marcescens/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Viabilidade Microbiana , Mutação , Serratia marcescens/enzimologia , Serratia marcescens/genética
20.
Res Microbiol ; 168(6): 567-574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28366837

RESUMO

Serralysin-like proteases are found in a wide variety of bacteria. These metalloproteases are frequently implicated in virulence and are members of the widely conserved RTX-toxin family. We identified a serralysin-like protease in the genome of a clinical isolate of Serratia marcescens that is highly similar to the canonical serralysin protein, PrtS. This gene was named serralysin-like protease E, SlpE, and was found in the majority (67%) of tested clinical isolates, but was absent from most tested non-clinical isolates including the insect pathogen and reference S. marcescens strain Db11. Purified recombinant SlpE exhibited calcium-dependent protease activity similar to metalloproteases PrtS and SlpB. Induction of slpE in the low-protease-producing S. marcescens strain PIC3611 highly elevated extracellular protease activity, and extracellular secretion required the lipD type 1 secretion system gene. Transcription of slpE was highly reduced in an eepR transcription factor mutant. Mutation of the slpE gene in a highly proteolytic clinical isolate reduced its protease activity, and evidence suggests that SlpE confers cytotoxicity of S. marcescens to the A549 airway carcinoma cell line. Together, these data reveal SlpE to be an EepR-regulated cytotoxic metalloprotease associated with clinical isolates of an important opportunistic pathogen.


Assuntos
Cálcio/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Infecções por Serratia/microbiologia , Serratia marcescens/enzimologia , Células A549 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Epiteliais , Genoma Bacteriano , Humanos , Metaloendopeptidases/genética , Metaloproteases/química , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa