Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Immunity ; 56(6): 1204-1219.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160119

RESUMO

During development, lymph node (LN) initiation is coordinated by lymphoid tissue organizer (LTo) cells that attract lymphoid tissue inducer (LTi) cells at strategic positions within the embryo. The identity and function of LTo cells during the initial attraction of LTi cells remain poorly understood. Using lineage tracing, we demonstrated that a subset of Osr1-expressing cells was mesenchymal LTo progenitors. By investigating the heterogeneity of Osr1+ cells, we uncovered distinct mesenchymal LTo signatures at diverse anatomical locations, identifying a common progenitor of mesenchymal LTos and LN-associated adipose tissue. Osr1 was essential for LN initiation, driving the commitment of mesenchymal LTo cells independent of neural retinoic acid, and for LN-associated lymphatic vasculature assembly. The combined action of chemokines CXCL13 and CCL21 was required for LN initiation. Our results redefine the role and identity of mesenchymal organizer cells and unify current views by proposing a model of cooperative cell function in LN initiation.


Assuntos
Organogênese , Fatores de Transcrição , Diferenciação Celular , Linfonodos , Tecido Linfoide
2.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39221968

RESUMO

The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.


Assuntos
Células Endoteliais , Linfangiogênese , Vasos Linfáticos , Fatores de Transcrição , Animais , Vasos Linfáticos/embriologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citologia , Camundongos , Linfangiogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Movimento Celular/genética , Proliferação de Células , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mesoderma/metabolismo , Mesoderma/citologia , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula
3.
Nature ; 587(7833): 270-274, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726801

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The mechanisms that determine such variable outcomes remain unresolved. Here we investigated CD4+ T cells that are reactive against the spike glycoprotein of SARS-CoV-2 in the peripheral blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors. We detected spike-reactive CD4+ T cells not only in 83% of patients with COVID-19 but also in 35% of healthy donors. Spike-reactive CD4+ T cells in healthy donors were primarily active against C-terminal epitopes in the spike protein, which show a higher homology to spike glycoproteins of human endemic coronaviruses, compared with N-terminal epitopes. Spike-protein-reactive T cell lines generated from SARS-CoV-2-naive healthy donors responded similarly to the C-terminal region of the spike proteins of the human endemic coronaviruses 229E and OC43, as well as that of SARS-CoV-2. This results indicate that spike-protein cross-reactive T cells are present, which were probably generated during previous encounters with endemic coronaviruses. The effect of pre-existing SARS-CoV-2 cross-reactive T cells on clinical outcomes remains to be determined in larger cohorts. However, the presence of spike-protein cross-reactive T cells in a considerable fraction of the general population may affect the dynamics of the current pandemic, and has important implications for the design and analysis of upcoming trials investigating COVID-19 vaccines.


Assuntos
Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Linhagem Celular , Coronavirus Humano 229E/imunologia , Coronavirus Humano NL63/imunologia , Coronavirus Humano OC43/imunologia , Reações Cruzadas , Epitopos de Linfócito T/imunologia , Feminino , Voluntários Saudáveis , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
4.
J Immunol ; 208(5): 1001-1005, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121642

RESUMO

Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.


Assuntos
Envelhecimento/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , Linfócitos T CD4-Positivos/imunologia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Casas de Saúde , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Eficácia de Vacinas , Adulto Jovem
5.
Eur J Immunol ; 51(5): 1278-1281, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33459347

RESUMO

HBV vaccination is recommend for hemodialysis patients, but only 50-60% of the patients show seroconversion. HBV vaccine-induced generation of HBV reactive T and B cells could be detected regardless of their capacity to mount a serological response, indicating that patients without seroconversion are potentially protected by their HBV-reactive T cell pool.


Assuntos
Linfócitos B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos B/metabolismo , Biomarcadores , Citocinas/metabolismo , Anticorpos Anti-Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/imunologia , Humanos , Imunofenotipagem , Diálise Renal , Linfócitos T/metabolismo , Vacinação
6.
J Neurol Neurosurg Psychiatry ; 93(9): 960-971, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835468

RESUMO

BACKGROUND: SARS-CoV-2 mRNA vaccination of healthy individuals is highly immunogenic and protective against severe COVID-19. However, there are limited data on how disease-modifying therapies (DMTs) alter SARS-CoV-2 mRNA vaccine immunogenicity in patients with autoimmune diseases. METHODS: As part of a prospective cohort study, we investigated the induction, stability and boosting of vaccine-specific antibodies, B cells and T cells in patients with multiple sclerosis (MS) on different DMTs after homologous primary, secondary and booster SARS-CoV-2 mRNA vaccinations. Of 126 patients with MS analysed, 105 received either anti-CD20-based B cell depletion (aCD20-BCD), fingolimod, interferon-ß, dimethyl fumarate, glatiramer acetate, teriflunomide or natalizumab, and 21 were untreated MS patients for comparison. RESULTS: In contrast to all other MS patients, and even after booster, most aCD20-BCD- and fingolimod-treated patients showed no to markedly reduced anti-S1 IgG, serum neutralising activity and a lack of receptor binding domain-specific and S2-specific B cells. Patients receiving fingolimod additionally lacked spike-reactive CD4+ T cell responses. The duration of fingolimod treatment, rather than peripheral blood B and T cell counts prior to vaccination, determined whether a humoral immune response was elicited. CONCLUSIONS: The lack of immunogenicity under long-term fingolimod treatment demonstrates that functional immune responses require not only immune cells themselves, but also access of these cells to the site of inoculation and their unimpeded movement. The absence of humoral and T cell responses suggests that fingolimod-treated patients with MS are at risk for severe SARS-CoV-2 infections despite booster vaccinations, which is highly relevant for clinical decision-making and adapted protective measures, particularly considering additional recently approved sphingosine-1-phosphate receptor antagonists for MS treatment.


Assuntos
COVID-19 , Esclerose Múltipla , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Cloridrato de Fingolimode/uso terapêutico , Humanos , Imunidade Celular , Esclerose Múltipla/tratamento farmacológico , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
7.
J Immunol ; 203(1): 208-215, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101665

RESUMO

Mucosal plasma cells (PC) and Ig production are essential to fend pathogens and to maintain mucosal homeostasis. In human Helicobacter pylori infection, mucosal PC express inducible NO synthase (iNOS), which positively correlates with clearance of experimental human infection. To characterize Ig genes and specificities of antral mucosal iNOS+ and iNOS- PC in H. pylori infection, we sequenced rearranged Ig genes from single cell-sorted PC from biopsy specimens of chronically infected patients and analyzed them with respect to their molecular features. The binding specificity of individual PC's Ig was determined following recombinant expression. We identified high rates of somatic hypermutations, especially targeting RGYW/WRCY hotspot motifs in the individual Ig genes, indicating T cell-dependent maturation. For seven of 14 recombinantly expressed Ig, Ag specificity could be determined. Two clones reacted to H. pylori proteins, and five were found to be polyreactive against LPSs, dsDNA, and ssDNA. All specific Ig originated from iNOS+ PC. H. pylori-specific Ig are encoded by V and J family genes previously shown to be also used in rearranged Ig loci of MALT B cell lymphomas. In summary, mucosal iNOS+ PC producing H. pylori-specific Ig accumulate in infection and appear to be a product of T cell-dependent B cell maturation. Moreover, the Ig's molecular features partly resembled that of MALT B cell lymphoma Ig genes, suggestive of a mechanism in which a progressive molecular evolution of pathogen-specific B cells to MALT B cell lymphoma occurs.


Assuntos
Infecções por Helicobacter/imunologia , Helicobacter pylori/fisiologia , Mucosa Intestinal/imunologia , Linfoma de Zona Marginal Tipo Células B/imunologia , Plasmócitos/imunologia , Antro Pilórico/imunologia , Linfócitos T/imunologia , Adulto , Proteínas de Bactérias/imunologia , Doença Crônica , Epitopos , Feminino , Humanos , Imunoglobulinas/metabolismo , Lipopolissacarídeos/imunologia , Linfoma de Zona Marginal Tipo Células B/genética , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/metabolismo , Hipermutação Somática de Imunoglobulina , Adulto Jovem
8.
J Biol Chem ; 294(4): 1328-1337, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30504222

RESUMO

The cyanoacrylate compound phenamacril (also known as JS399-19) is a recently identified fungicide that exerts its antifungal effect on susceptible Fusarium species by inhibiting the ATPase activity of their myosin class I motor domains. Although much is known about the antifungal spectrum of phenamacril, the exact mechanism behind the phenamacril-mediated inhibition remains to be resolved. Here, we describe the characterization of the effect of phenamacril on purified myosin motor constructs from the model plant pathogen and phenamacril-susceptible species Fusarium graminearum, phenamacril-resistant Fusarium species, and the mycetozoan model organism Dictyostelium discoideum Our results show that phenamacril potently (IC50 ∼360 nm), reversibly, and noncompetitively inhibits ATP turnover, actin binding during ATP turnover, and motor activity of F. graminearum myosin-1. Phenamacril also inhibits the ATPase activity of Fusarium avenaceum myosin-1 but has little or no inhibitory effect on the motor activity of Fusarium solani myosin-1, human myosin-1c, and D. discoideum myosin isoforms 1B, 1E, and 2. Our findings indicate that phenamacril is a species-specific, noncompetitive inhibitor of class I myosin in susceptible Fusarium sp.


Assuntos
Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Miosina Tipo I/antagonistas & inibidores , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Conformação Proteica , Especificidade da Espécie
12.
J Biol Chem ; 288(42): 30029-30041, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23990465

RESUMO

Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton.


Assuntos
Actinas/química , Proteínas de Membrana/química , Miosinas/química , Actinas/genética , Actinas/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Drosophila melanogaster , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Miosinas/genética , Miosinas/metabolismo , Ligação Proteica , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Elife ; 122024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446501

RESUMO

Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin ß4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Miosinas , Humanos , Citoesqueleto de Actina , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Mutação , Miosinas/genética , Miosinas/metabolismo
14.
J Cell Sci ; 124(Pt 15): 2521-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21712373

RESUMO

The mitotic spindle in eukaryotic cells is composed of a bipolar array of microtubules (MTs) and associated proteins that are required during mitosis for the correct partitioning of the two sets of chromosomes to the daughter cells. In addition to the well-established functions of MT-associated proteins (MAPs) and MT-based motors in cell division, there is increasing evidence that the F-actin-based myosin motors are important mediators of F-actin-MT interactions during mitosis. Here, we report the functional characterization of the long-tailed class-1 myosin myosin-1C from Dictyostelium discoideum during mitosis. Our data reveal that myosin-1C binds to MTs and has a role in maintenance of spindle stability for accurate chromosome separation. Both myosin-1C motor function and tail-domain-mediated MT-F-actin interactions are required for the cell-cycle-dependent relocalization of the protein from the cell periphery to the spindle. We show that the association of myosin-1C with MTs is mediated through the tail domain. The myosin-1C tail can inhibit kinesin motor activity, increase the stability of MTs, and form crosslinks between MTs and F-actin. These data illustrate that myosin-1C is involved in the regulation of MT function during mitosis in D. discoideum.


Assuntos
Dictyostelium/citologia , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Fuso Acromático/metabolismo , Actinas/genética , Actinas/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Dictyostelium/genética , Microscopia de Fluorescência , Miosinas/genética , Ligação Proteica , Fuso Acromático/genética
15.
Appl Environ Microbiol ; 79(5): 1730-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23263964

RESUMO

Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected.


Assuntos
Anaplasma phagocytophilum/isolamento & purificação , Variação Genética , Ixodes/microbiologia , Anaplasma phagocytophilum/classificação , Anaplasma phagocytophilum/genética , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ecossistema , Dados de Sequência Molecular , Prevalência , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
NPJ Regen Med ; 8(1): 19, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019910

RESUMO

Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFß signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.

17.
Front Immunol ; 14: 1056525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798117

RESUMO

Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.


Assuntos
Vacina BNT162 , COVID-19 , ChAdOx1 nCoV-19 , Reações Cruzadas , Humanos , Vacina BNT162/imunologia , ChAdOx1 nCoV-19/imunologia , COVID-19/prevenção & controle , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Vacinação
18.
Emerg Infect Dis ; 17(5): 890-2, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21529404

RESUMO

To explore increased risk for human Rickettsia spp. infection in Germany, we investigated recreational areas and renatured brown coal surface-mining sites (also used for recreation) for the presence of spotted fever group rickettsiae in ticks. R. raoultii (56.7%), R. slovaca (13.3%), and R. helvetica (>13.4%) were detected in the respective tick species.


Assuntos
Rickettsia/fisiologia , Carrapatos/microbiologia , Animais , Feminino , Genes Bacterianos/genética , Alemanha , Humanos , Masculino , Dados de Sequência Molecular , Rickettsia/genética , Homologia de Sequência
19.
Microorganisms ; 9(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200876

RESUMO

Borrelia burgdorferi sensu lato (s.l.) causes the most common tick-borne infection in Europe, with Germany being amongst the countries with the highest incidences in humans. This study aimed at (1) comparing infection rates of B. burgdorferi s.l. in questing Ixodes ricinus ticks from different habitat types in Southern Germany, (2) analysing genospecies distribution by habitat type, and (3) testing tissue and ticks from hosts for B. burgdorferi s.l. Questing ticks from urban, pasture, and natural habitats together with feeding ticks from cattle (pasture) and ticks and tissue samples from wild boars and roe deer (natural site) were tested by PCR and RFLP for species differentiation. B. burgdorferi s.l. was found in 29.8% questing adults and 15% nymphs. Prevalence was lower at the urban sites with occurrence of roe deer than where these were absent. Borrelia burgdorferi s.l. DNA was found in 4.8% ticks from roe deer, 6.3% from wild boar, and 7.8% from cattle. Six genospecies were identified in unfed ticks: Borrelia afzelii (48.6%), Borrelia burgdorferi sensu stricto (16%), Borrelia garinii (13.2%), Borrelia valaisiana (7.5%), Borrelia spielmanii (6.2%), and Borrelia bavariensis (0.9%). This study shows high infection levels and a great diversity of Borrelia in questing ticks. The presence of roe deer seems to reduce B. burgdorferi s.l. infection rates in tick populations.

20.
Commun Biol ; 4(1): 1144, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593965

RESUMO

Flow cytometers are robust and ubiquitous tools of biomedical research, as they enable high-throughput fluorescence-based multi-parametric analysis and sorting of single cells. However, analysis is often constrained by the availability of detection reagents or functional changes of cells caused by fluorescent staining. Here, we introduce MAPS-FC (multi-angle pulse shape flow cytometry), an approach that measures angle- and time-resolved scattered light for high-throughput cell characterization to circumvent the constraints of conventional flow cytometry. In order to derive cell-specific properties from the acquired pulse shapes, we developed a data analysis procedure based on wavelet transform and k-means clustering. We analyzed cell cycle stages of Jurkat and HEK293 cells by MAPS-FC and were able to assign cells to the G1, S, and G2/M phases without the need for fluorescent labeling. The results were validated by DNA staining and by sorting and re-analysis of isolated G1, S, and G2/M populations. Our results demonstrate that MAPS-FC can be used to determine cell properties that are otherwise only accessible by invasive labeling. This approach is technically compatible with conventional flow cytometers and paves the way for label-free cell sorting.


Assuntos
Ciclo Celular , Citometria de Fluxo/instrumentação , Células HEK293 , Humanos , Células Jurkat
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa