Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 291(31): 16292-306, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226599

RESUMO

Doublecortin is a microtubule-associated protein produced during neurogenesis. The protein stabilizes microtubules and stimulates their polymerization, which allows migration of immature neurons to their designated location in the brain. Mutations in the gene that impair doublecortin function and cause severe brain formation disorders are located on a tandem repeat of two doublecortin domains. The molecular mechanism of action of doublecortin is only incompletely understood. Anti-doublecortin antibodies, such as the rabbit polyclonal Abcam 18732, are widely used as neurogenesis markers. Here, we report the generation and characterization of antibodies that bind to single doublecortin domains. The antibodies were used as tools to obtain structures of both domains. Four independent crystal structures of the N-terminal domain reveal several distinct open and closed conformations of the peptide linking N- and C-terminal domains, which can be related to doublecortin function. An NMR assignment and a crystal structure in complex with a camelid antibody fragment show that the doublecortin C-terminal domain adopts the same well defined ubiquitin-like fold as the N-terminal domain, despite its reported aggregation and molten globule-like properties. The antibodies' unique domain specificity also renders them ideal research tools to better understand the role of individual domains in doublecortin function. A single chain camelid antibody fragment specific for the C-terminal doublecortin domain affected microtubule binding, whereas a monoclonal mouse antibody specific for the N-terminal domain did not. Together with steric considerations, this suggests that the microtubule-interacting doublecortin domain observed in cryo-electron micrographs is the C-terminal domain rather than the N-terminal one.


Assuntos
Anticorpos Monoclonais Murinos/química , Proteínas Associadas aos Microtúbulos/química , Neuropeptídeos/química , Anticorpos de Cadeia Única/química , Animais , Camelus , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Domínio Duplacortina , Humanos , Camundongos , Domínios Proteicos , Estrutura Quaternária de Proteína , Coelhos
2.
J Struct Biol ; 194(2): 191-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26876146

RESUMO

The cholesteryl ester transfer protein (CETP) enables the transfer of cholesteryl ester (CE) from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) in the plasma compartment. CETP inhibition raises plasma levels of HDL cholesterol; a ternary tunnel complex with CETP bridging HDL and LDL was suggested as a mechanism. Here, we test whether the inhibition of CETP tunnel complex formation is a promising approach to suppress CE transfer from HDL to LDL, for potential treatment of cardio-vascular disease (CVD). Three monoclonal antibodies against different epitopes of CETP are assayed for their potential to interfere with CE transfer between HDL and/or LDL. Surprisingly, antibodies that target the tips of the elongated CETP molecule, interaction sites sterically required to form the suggested transfer complexes, do not interfere with CETP activity, but an antibody binding to the central region does. We show that CETP interacts with HDL, but not with LDL. Our findings demonstrate that a ternary tunnel complex is not the mechanistic prerequisite to transfer CE among lipoproteins.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Epitopos/química , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Transporte Biológico , Linhagem Celular , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/ultraestrutura , Epitopos/ultraestrutura , Expressão Gênica , Humanos , Lipoproteínas HDL/ultraestrutura , Lipoproteínas LDL/ultraestrutura , Microscopia Eletrônica de Transmissão , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
3.
Malar J ; 15: 161, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979066

RESUMO

BACKGROUND: The pathogenesis of malaria is primarily associated with blood-stage infection and there is strong evidence that antibodies specific for parasite blood-stage antigens can control parasitaemia. This provides a strong rationale for incorporation of asexual blood-stage antigen components into an effective multivalent malaria subunit vaccine. On the basis of available genome-wide transcriptomic and proteomic data, previously uncharacterized Plasmodium falciparum open reading frames were screened for new blood stage vaccine candidates. This has led to the identification of the cysteine-rich protective antigen (PfCyRPA), which forms together with PfRH5 and PfRipr a multiprotein complex that is crucial for erythrocyte invasion. METHODS: Glycosylated and non-glycosylated variants of recombinant PfCyRPA were expressed and produced as secreted protein in mammalian cells. Adjuvanted formulations of purified PfCyRPA were tested to assess whether they can effectively elicit parasite inhibitory antibodies, and to investigate whether or not the glycosylation status affects antibody binding. For this purpose, two sets of PfCyRPA-specific mouse monoclonal antibodies (mAbs) have been raised and evaluated for functional activity. RESULTS: Generated PfCyRPA-specific mAbs, irrespective of the immunogen's glycosylation status, showed substantial parasite in vitro growth-inhibitory activity due to inhibition of erythrocyte invasion by merozoites. Furthermore, passive immunization experiments in P. falciparum infected NOD-scid IL2Rγ (null) mice engrafted with human erythrocytes demonstrated potent in vivo growth-inhibitory activity of generated mAbs. CONCLUSIONS: Recombinantly expressed PfCyRPA tested as adjuvanted vaccine formulations in mice elicited antibodies that significantly inhibit P. falciparum asexual blood stage parasite growth both in vitro and in vivo. These findings render PfCyRPA a promising blood-stage candidate antigen for inclusion into a multicomponent malaria subunit vaccine.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antiprotozoários/isolamento & purificação , Antígenos de Protozoários/administração & dosagem , Vacinas Antimaláricas/administração & dosagem , Camundongos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
4.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1124-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695257

RESUMO

The aspartic protease BACE2 is responsible for the shedding of the transmembrane protein Tmem27 from the surface of pancreatic ß-cells, which leads to inactivation of the ß-cell proliferating activity of Tmem27. This role of BACE2 in the control of ß-cell maintenance suggests BACE2 as a drug target for diabetes. Inhibition of BACE2 has recently been shown to lead to improved control of glucose homeostasis and to increased insulin levels in insulin-resistant mice. BACE2 has 52% sequence identity to the well studied Alzheimer's disease target enzyme ß-secretase (BACE1). High-resolution BACE2 structures would contribute significantly to the investigation of this enzyme as either a drug target or anti-target. Surface mutagenesis, BACE2-binding antibody Fab fragments, single-domain camelid antibody VHH fragments (Xaperones) and Fyn-kinase-derived SH3 domains (Fynomers) were used as crystallization helpers to obtain the first high-resolution structures of BACE2. Eight crystal structures in six different packing environments define an ensemble of low-energy conformations available to the enzyme. Here, the different strategies used for raising and selecting BACE2 binders for cocrystallization are described and the crystallization success, crystal quality and the time and resources needed to obtain suitable crystals are compared.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Fragmentos Fab das Imunoglobulinas/química , Células Secretoras de Insulina/enzimologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Área Sob a Curva , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Domínio Catalítico , Cristalização , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Modelos Moleculares , Mutagênese , Conformação Proteica , Ressonância de Plasmônio de Superfície , Difração de Raios X
5.
Biochem Biophys Res Commun ; 431(1): 70-5, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23277102

RESUMO

The human ether-a-go-go related gene (hERG) potassium channel plays a major role in the repolarization of the cardiac action potential. Inhibition of the hERG function by mutations or a wide variety of pharmaceutical compounds cause long QT syndrome and lead to potentially lethal arrhythmias. For detailed insights into the structural and biochemical background of hERG function and drug binding, the purification of recombinant protein is essential. Because the hERG channel is a challenging protein to purify, fast and easy techniques to evaluate different expression, solubilization and purification conditions are of primary importance. Here, we describe the generation of a set of 12 monoclonal antibodies against hERG. Beside their suitability in western blot, immunoprecipitation and immunostaining, these antibodies were used to establish a sandwich ELISA for the detection and relative quantification of hERG in different expression systems. Furthermore, a Fab fragment was used in fluorescence size exclusion chromatography to determine the oligomeric state of hERG after solubilization. These new tools can be used for a fast and efficient screening of expression, solubilization and purification conditions.


Assuntos
Anticorpos Monoclonais/biossíntese , Ensaio de Imunoadsorção Enzimática , Canais de Potássio Éter-A-Go-Go/análise , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Cromatografia em Gel/métodos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/imunologia , Canais de Potássio Éter-A-Go-Go/isolamento & purificação , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas , Camundongos
6.
Bioessays ; 33(12): 946-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002169

RESUMO

Multigene delivery and expression systems are emerging as key technologies for many applications in contemporary biology. We have developed new methods for multigene delivery and expression in eukaryotic hosts for a variety of applications, including production of protein complexes for structural biology and drug development, provision of multicomponent protein biologics, and cell-based assays. We implemented tandem recombineering to facilitate rapid generation of multicomponent gene expression constructs for efficient transformation of mammalian cells, resulting in homogenous cell populations. Analysis of multiple parameters in living cells may require co-expression of fluorescently tagged sensors simultaneously in a single cell, at defined and ideally controlled ratios. Our method enables such applications by overcoming currently limiting challenges. Here, we review recent multigene delivery and expression strategies and their exploitation in mammalian cells. We discuss applications in drug discovery assays, interaction studies, and biologics production, which may benefit in the future from our novel approach.


Assuntos
Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Animais , Baculoviridae/genética , Linhagem Celular , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Mamíferos , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
7.
Nat Commun ; 14(1): 2057, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045813

RESUMO

Mutations in glucocerebrosidase cause the lysosomal storage disorder Gaucher's disease and are the most common risk factor for Parkinson's disease. Therapies to restore the enzyme's function in the brain hold great promise for treating the neurological implications. Thus, we developed blood-brain barrier penetrant therapeutic molecules by fusing transferrin receptor-binding moieties to ß-glucocerebrosidase (referred to as GCase-BS). We demonstrate that these fusion proteins show significantly increased uptake and lysosomal efficiency compared to the enzyme alone. In a cellular disease model, GCase-BS rapidly rescues the lysosomal proteome and lipid accumulations beyond known substrates. In a mouse disease model, intravenous injection of GCase-BS leads to a sustained reduction of glucosylsphingosine and can lower neurofilament-light chain plasma levels. Collectively, these findings demonstrate the potential of GCase-BS for treating GBA1-associated lysosomal dysfunction, provide insight into candidate biomarkers, and may ultimately open a promising treatment paradigm for lysosomal storage diseases extending beyond the central nervous system.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Lisossomos/metabolismo , Mutação , alfa-Sinucleína/metabolismo
8.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 2): 119-23, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21245533

RESUMO

E-ISA247 (voclosporin) is a cyclosporin A analogue that is in late-stage clinical development for the treatment of autoimmune diseases and the prevention of organ graft rejection. The X-ray crystal structures of E-ISA247 and its stereoisomer Z-ISA247 bound to cyclophilin A have been determined and their binding affinities were measured to be 15 and 61 nM, respectively, by fluorescence spectroscopy. The higher affinity of E-ISA247 can be explained by superior van der Waals contacts between its unique side chain and cyclophilin A. Comparison with the known ternary structure including calcineurin suggests that the higher immunosuppressive efficacy of E-ISA247 relative to cyclosporin A could be a consequence of structural changes in calcineurin induced by the modified E-ISA247 side chain.


Assuntos
Ciclofilina A/química , Ciclosporina/química , Imunossupressores/química , Cristalografia por Raios X , Ciclofilina A/metabolismo , Ciclosporina/metabolismo , Humanos , Imunossupressores/metabolismo , Isomerismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
9.
Cell Death Dis ; 12(6): 538, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035216

RESUMO

Removal of apoptotic cells by phagocytes (also called efferocytosis) is a crucial process for tissue homeostasis. Professional phagocytes express a plethora of surface receptors enabling them to sense and engulf apoptotic cells, thus avoiding persistence of dead cells and cellular debris and their consequent effects. Dysregulation of efferocytosis is thought to lead to secondary necrosis and associated inflammation and immune activation. Efferocytosis in primarily murine macrophages and dendritic cells has been shown to require TAM RTKs, with MERTK and AXL being critical for clearance of apoptotic cells. The functional role of human orthologs, especially the exact contribution of each individual receptor is less well studied. Here we show that human macrophages differentiated in vitro from iPSC-derived precursor cells express both AXL and MERTK and engulf apoptotic cells. TAM RTK agonism by the natural ligand growth-arrest specific 6 (GAS6) significantly enhanced such efferocytosis. Using a newly-developed mouse model of kinase-dead MERTK, we demonstrate that MERTK kinase activity is essential for efferocytosis in peritoneal macrophages in vivo. Moreover, human iPSC-derived macrophages treated in vitro with blocking antibodies or small molecule inhibitors recapitulated this observation. Hence, our results highlight a conserved MERTK function between mice and humans, and the critical role of its kinase activity in homeostatic efferocytosis.


Assuntos
Macrófagos/fisiologia , Fagocitose/fisiologia , c-Mer Tirosina Quinase/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Fosfatidilserinas/farmacologia , c-Mer Tirosina Quinase/agonistas , c-Mer Tirosina Quinase/genética
10.
J Lipid Res ; 51(12): 3443-54, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861162

RESUMO

The mechanism by which cholesteryl ester transfer protein (CETP) activity affects HDL metabolism was investigated using agents that selectively target CETP (dalcetrapib, torcetrapib, anacetrapib). In contrast with torcetrapib and anacetrapib, dalcetrapib requires cysteine 13 to decrease CETP activity, measured as transfer of cholesteryl ester (CE) from HDL to LDL, and does not affect transfer of CE from HDL3 to HDL2. Only dalcetrapib induced a conformational change in CETP, when added to human plasma in vitro, also observed in vivo and correlated with CETP activity. CETP-induced pre-ß-HDL formation in vitro in human plasma was unchanged by dalcetrapib ≤3 µM and increased at 10 µM. A dose-dependent inhibition of pre-ß-HDL formation by torcetrapib and anacetrapib (0.1 to 10 µM) suggested that dalcetrapib modulates CETP activity. In hamsters injected with [³H]cholesterol-labeled autologous macrophages, and given dalcetrapib (100 mg twice daily), torcetrapib [30 mg once daily (QD)], or anacetrapib (30 mg QD), only dalcetrapib significantly increased fecal elimination of both [³H]neutral sterols and [³H]bile acids, whereas all compounds increased plasma HDL-[³H]cholesterol. These data suggest that modulation of CETP activity by dalcetrapib does not inhibit CETP-induced pre-ß-HDL formation, which may be required to increase reverse cholesterol transport.


Assuntos
Anticolesterolemiantes/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Colesterol/metabolismo , Lipoproteínas de Alta Densidade Pré-beta/metabolismo , Amidas , Animais , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Cricetinae , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Ésteres , Lipoproteínas de Alta Densidade Pré-beta/sangue , Humanos , Oxazolidinonas/farmacologia , Quinolinas/farmacologia , Compostos de Sulfidrila/farmacologia
11.
Nature ; 432(7013): 118-22, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15525992

RESUMO

In higher organisms the formation of the steroid scaffold is catalysed exclusively by the membrane-bound oxidosqualene cyclase (OSC; lanosterol synthase). In a highly selective cyclization reaction OSC forms lanosterol with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. Valuable data on the mechanism of the complex cyclization cascade have been collected during the past 50 years using suicide inhibitors, mutagenesis studies and homology modelling. Nevertheless it is still not fully understood how the enzyme catalyses the reaction. Because of the decisive role of OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. Here we present two crystal structures of the human membrane protein OSC: the target protein with an inhibitor that showed cholesterol lowering in vivo opens the way for the structure-based design of new OSC inhibitors. The complex with the reaction product lanosterol gives a clear picture of the way in which the enzyme achieves product specificity in this highly exothermic cyclization reaction.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Lanosterol/metabolismo , Esqualeno/análogos & derivados , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Catálise , Cristalografia por Raios X , Ciclização , Desenho de Fármacos , Humanos , Transferases Intramoleculares/antagonistas & inibidores , Lanosterol/química , Modelos Moleculares , Esqualeno/metabolismo , Relação Estrutura-Atividade
12.
Cell Mol Life Sci ; 66(15): 2489-501, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19430727

RESUMO

The control of fatty acid translocation across the mitochondrial membrane is mediated by the carnitine palmitoyltransferase (CPT) system. Modulation of its functionality has simultaneous effects on fatty acid and glucose metabolism. This encourages use of the CPT system as drug target for reduction of gluconeogenesis and restoration of lipid homeostasis, which are beneficial in the treatment of type 2 diabetes mellitus and obesity. Recently, crystal structures of CPT-2 were determined in uninhibited forms and in complexes with inhibitory substrate-analogs with anti-diabetic properties in animal models and in clinical studies. The CPT-2 crystal structures have advanced understanding of CPT structure-function relationships and will facilitate discovery of novel inhibitors by structure-based drug design. However, a number of unresolved questions regarding the biochemistry and pharmacology of CPT enzymes remain and are addressed in this review.


Assuntos
Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Conformação Proteica , Processamento de Proteína Pós-Traducional , Distribuição Tecidual
13.
Structure ; 14(4): 713-23, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16615913

RESUMO

Carnitine palmitoyltransferases 1 and 2 (CPTs) facilitate the import of long-chain fatty acids into mitochondria. Modulation of the catalytic activity of the CPT system is currently under investigation for the development of novel drugs against diabetes mellitus. We report here the 1.6 A resolution structure of the full-length mitochondrial membrane protein CPT-2. The structure of CPT-2 in complex with the generic CPT inhibitor ST1326 ([R]-N-[tetradecylcarbamoyl]-aminocarnitine), a substrate analog mimicking palmitoylcarnitine and currently in clinical trials for diabetes mellitus treatment, was solved at 2.5 A resolution. These structures of CPT-2 provide insight into the function of residues involved in substrate binding and determination of substrate specificity, thereby facilitating the rational design of antidiabetic drugs. We identify a sequence insertion found in CPT-2 that mediates membrane localization. Mapping of mutations described for CPT-2 deficiency, a hereditary disorder of lipid metabolism, implies effects on substrate recognition and structural integrity of CPT-2.


Assuntos
Carnitina O-Palmitoiltransferase/química , Cristalografia por Raios X/métodos , Diabetes Mellitus/metabolismo , Sequência de Aminoácidos , Animais , Betaína/análogos & derivados , Betaína/química , Sítios de Ligação , Carnitina/análogos & derivados , Carnitina/química , Diabetes Mellitus/terapia , Humanos , Metabolismo dos Lipídeos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Ratos , Especificidade por Substrato , Ultracentrifugação
14.
Sci Rep ; 8(1): 5083, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572554

RESUMO

Protein-protein interactions (PPIs) are at the core of virtually all biological processes in cells. Consequently, targeting PPIs is emerging at the forefront of drug discovery. Cellular assays which closely recapitulate native conditions in vivo are instrumental to understand how small molecule drugs can modulate such interactions. We have integrated MultiBacMam, a baculovirus-based mammalian gene delivery tool we developed, with bimolecular fluorescence complementation (BiFC), giving rise to a highly efficient system for assay development, identification and characterization of PPI modulators. We used our system to analyze compounds impacting on CDK5-p25 PPI, which is implicated in numerous diseases including Alzheimer's. We evaluated our tool-kit with the known inhibitor p5T, and we established a mini-screen to identify compounds that modulate this PPI in dose-response experiments. Finally, we discovered several compounds disrupting CDK5-p25 PPI, which had not been identified by other screening or structure-based methods before.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas/métodos , Fluorescência , Humanos , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química
15.
FEBS Lett ; 581(17): 3247-52, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17585909

RESUMO

The mitochondrial membrane-associated carnitine palmitoyltransferase system is a validated target for the treatment of type 2 diabetes mellitus. To further facilitate structure-based drug discovery, we determined the crystal structure of rat CPT-2 (rCPT-2) in complex with the substrate analogue palmitoyl-aminocarnitine at 1.8A resolution. Biochemical analyses revealed a strong effect of this compound on rCPT-2 activity and stability. Using a computational approach we examined the membrane association of rCPT-2. The protein interacts with the membrane as a functional monomer and the calculations confirm the presence of a membrane association domain that consists of layers of hydrophobic and positively charged residues.


Assuntos
Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina/análogos & derivados , Cristalografia por Raios X , Membranas Mitocondriais/metabolismo , Animais , Sítios de Ligação , Carnitina/química , Carnitina/metabolismo , Modelos Moleculares , Modelos Teóricos , Ligação Proteica , Desnaturação Proteica , Ratos , Especificidade por Substrato
16.
Elife ; 62017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195038

RESUMO

Invasion of erythrocytes by Plasmodial merozoites is a composite process involving the interplay of several proteins. Among them, the Plasmodium falciparum Cysteine-Rich Protective Antigen (PfCyRPA) is a crucial component of a ternary complex, including Reticulocyte binding-like Homologous protein 5 (PfRH5) and the RH5-interacting protein (PfRipr), essential for erythrocyte invasion. Here, we present the crystal structures of PfCyRPA and its complex with the antigen-binding fragment of a parasite growth inhibitory antibody. PfCyRPA adopts a 6-bladed ß-propeller structure with similarity to the classic sialidase fold, but it has no sialidase activity and fulfills a purely non-enzymatic function. Characterization of the epitope recognized by protective antibodies may facilitate design of peptidomimetics to focus vaccine responses on protective epitopes. Both in vitro and in vivo anti-PfCyRPA and anti-PfRH5 antibodies showed more potent parasite growth inhibitory activity in combination than on their own, supporting a combined delivery of PfCyRPA and PfRH5 in vaccines.


Assuntos
Anticorpos Antiprotozoários/química , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Vacinas Antimaláricas/química , Vacinas Antimaláricas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
17.
Structure ; 11(8): 947-59, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12906826

RESUMO

Inhibition of dipeptidyl peptidase IV (DPP-IV), the main glucagon-like peptide 1 (GLP1)-degrading enzyme, has been proposed for the treatment of type II diabetes. We expressed and purified the ectodomain of human DPP-IV in Pichia pastoris and determined the X-ray structure at 2.1 A resolution. The enzyme consists of two domains, the catalytic domain, with an alpha/beta hydrolase fold, and a beta propeller domain with an 8-fold repeat of a four-strand beta sheet motif. The beta propeller domain contributes two important functions to the molecule that have not been reported for such structures, an extra beta sheet motif that forms part of the dimerization interface and an additional short helix with a double Glu sequence motif. The Glu motif provides recognition and a binding site for the N terminus of the substrates, as revealed by the complex structure with diprotin A, a substrate with low turnover that is trapped in the tetrahedral intermediate of the reaction in the crystal.


Assuntos
Dipeptidil Peptidase 4/química , Exopeptidases/metabolismo , Prolina , Adenosina Desaminase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Dipeptidil Peptidase 4/isolamento & purificação , Dipeptidil Peptidase 4/metabolismo , Estabilidade Enzimática , Glicosilação , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/antagonistas & inibidores , Pichia/enzimologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Água/química
19.
FEBS Open Bio ; 3: 204-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23772395

RESUMO

Carnitine palmitoyl transferase 2 (CPT-2) is a key enzyme in the mitochondrial fatty acid metabolism. The active site is comprised of a Y-shaped tunnel with distinct binding sites for the substrate acylcarnitine and the cofactor CoA. We investigated the thermodynamics of binding of four inhibitors directed against either the CoA or the acylcarnitine binding sites using isothermal titration calorimetry (ITC). CPT-2 is a monotopic membrane protein and was solubilized by ß-octylglucoside (ß-OG) above its critical micellar concentration (CMC) to perform inhibitor titrations in solutions containing detergent micelles. The CMC of ß-OG in the presence of inhibitors was measured with ITC and small variations were observed. The inhibitors bound to rat CPT-2 (rCPT-2) with 1:1 stoichiometry and the dissociation constants were in the range of K D = 2-20 µM. New X-ray structures and docking models of rCPT-2 in complex with inhibitors enable an analysis of the thermodynamic data in the context of the interaction observed for the individual binding sites of the ligands. For all ligands the binding enthalpy was exothermic, and enthalpy as well as entropy contributed to the binding reaction, with the exception of ST1326 for which binding was solely enthalpy-driven. The substrate analog ST1326 binds to the acylcarnitine binding site and a heat capacity change close to zero suggests a balance of electrostatic and hydrophobic interactions. An excellent correlation of the thermodynamic (ITC) and structural (X-ray crystallography, models) data was observed suggesting that ITC measurements provide valuable information for optimizing inhibitor binding in drug discovery.

20.
J Med Chem ; 56(23): 9789-801, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24224654

RESUMO

Starting from the weakly active dual CatS/K inhibitor 5, structure-based design supported by X-ray analysis led to the discovery of the potent and selective (>50,000-fold vs CatK) cyclopentane derivative 22 by exploiting specific ligand-receptor interactions in the S2 pocket of CatS. Changing the central cyclopentane scaffold to the analogous pyrrolidine derivative 57 decreased the enzyme as well as the cell-based activity significantly by 24- and 69-fold, respectively. The most promising scaffold identified was the readily accessible proline derivative (e.g., 79). This compound, with an appealing ligand efficiency (LE) of 0.47, included additional structural modifications binding in the S1 and S3 pockets of CatS, leading to favorable in vitro and in vivo properties. Compound 79 reduced IL-2 production in a transgenic DO10.11 mouse model of antigen presentation in a dose-dependent manner with an ED50 of 5 mg/kg.


Assuntos
Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/síntese química , Animais , Ciclopentanos/química , Inibidores de Cisteína Proteinase/farmacocinética , Humanos , Camundongos , Prolina/análogos & derivados , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa