Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.377
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38490196

RESUMO

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Assuntos
Encéfalo , Interferon Tipo I , Microglia , Animais , Camundongos , Interferon Tipo I/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Peixe-Zebra , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento
2.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749326

RESUMO

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Assuntos
Doença de Alzheimer , Feminino , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglia/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
3.
Annu Rev Biochem ; 88: 661-689, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30649923

RESUMO

Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.


Assuntos
Citocinese , Eucariotos/fisiologia , Fuso Acromático/metabolismo , Actinas/metabolismo , Animais , Ciclo Celular , Eucariotos/metabolismo , Humanos , Modelos Biológicos , Miosinas/metabolismo , Transdução de Sinais , Fuso Acromático/fisiologia , Leveduras/metabolismo , Leveduras/fisiologia
4.
Annu Rev Cell Dev Biol ; 35: 1-28, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31394047

RESUMO

This is the story of someone who has been fortunate to work in a field of research where essentially nothing was known at the outset but that blossomed with the discovery of profound insights about two basic biological processes: cell motility and cytokinesis. The field started with no molecules, just a few people, and primitive methods. Over time, technological advances in biophysics, biochemistry, and microscopy allowed the combined efforts of scientists in hundreds of laboratories to explain mysterious processes with molecular mechanisms that can be embodied in mathematical equations and simulated by computers. The success of this field is a tribute to the power of the reductionist strategy for understanding biology.


Assuntos
Biologia Celular/história , Movimento Celular , Citocinese , História do Século XX , História do Século XXI , Proteínas dos Microfilamentos/metabolismo , Estados Unidos
5.
Cell ; 171(5): 1165-1175.e13, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149605

RESUMO

Biased agonism has been proposed as a means to separate desirable and adverse drug responses downstream of G protein-coupled receptor (GPCR) targets. Herein, we describe structural features of a series of mu-opioid-receptor (MOR)-selective agonists that preferentially activate receptors to couple to G proteins or to recruit ßarrestin proteins. By comparing relative bias for MOR-mediated signaling in each pathway, we demonstrate a strong correlation between the respiratory suppression/antinociception therapeutic window in a series of compounds spanning a wide range of signaling bias. We find that ßarrestin-biased compounds, such as fentanyl, are more likely to induce respiratory suppression at weak analgesic doses, while G protein signaling bias broadens the therapeutic window, allowing for antinociception in the absence of respiratory suppression.


Assuntos
Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Receptores Opioides mu/agonistas , Animais , Fentanila/administração & dosagem , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Morfina/administração & dosagem , Receptores Opioides mu/química , Sistema Respiratório/efeitos dos fármacos , Transdução de Sinais , beta-Arrestinas/metabolismo
6.
Immunity ; 55(3): 512-526.e9, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263569

RESUMO

Dual blockade of the PD-1 and TIGIT coinhibitory receptors on T cells shows promising early results in cancer patients. Here, we studied the mechanisms whereby PD-1 and/or TIGIT blockade modulate anti-tumor CD8+ T cells. Although PD-1 and TIGIT are thought to regulate different costimulatory receptors (CD28 and CD226), effectiveness of PD-1 or TIGIT inhibition in preclinical tumor models was reduced in the absence of CD226. CD226 expression associated with clinical benefit in patients with non-small cell lung carcinoma (NSCLC) treated with anti-PD-L1 antibody atezolizumab. CD226 and CD28 were co-expressed on NSCLC infiltrating CD8+ T cells poised for expansion. Mechanistically, PD-1 inhibited phosphorylation of both CD226 and CD28 via its ITIM-containing intracellular domain (ICD); TIGIT's ICD was dispensable, with TIGIT restricting CD226 co-stimulation by blocking interaction with their common ligand PVR (CD155). Thus, full restoration of CD226 signaling, and optimal anti-tumor CD8+ T cell responses, requires blockade of TIGIT and PD-1, providing a mechanistic rationale for combinatorial targeting in the clinic.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos CD28/metabolismo , Humanos , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo
7.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34363750

RESUMO

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Assuntos
Autofagia/fisiologia , Células Endoteliais/fisiologia , Infiltração de Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Animais , Quimiotaxia de Leucócito/fisiologia , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Junções Intercelulares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia
8.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046436

RESUMO

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , National Institutes of Health (U.S.) , Estados Unidos
9.
Nature ; 627(8005): 763-766, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538938

RESUMO

Relativistic jets are observed from accreting and cataclysmic transients throughout the Universe, and have a profound impact on their surroundings1,2. Despite their importance, their launch mechanism is not known. For accreting neutron stars, the speed of their compact jets can reveal whether the jets are powered by magnetic fields anchored in the accretion flow3 or in the star itself4,5, but so far no such measurements exist. These objects can show bright explosions on their surface due to unstable thermonuclear burning of recently accreted material, called type-I X-ray bursts6, during which the mass-accretion rate increases7-9. Here, we report on bright flares in the jet emission for a few minutes after each X-ray burst, attributed to the increased accretion rate. With these flares, we measure the speed of a neutron star compact jet to be v = 0.38 - 0.08 + 0.11 c , much slower than those from black holes at similar luminosities. This discovery provides a powerful new tool in which we can determine the role that individual system properties have on the jet speed, revealing the dominant jet launching mechanism.

10.
Nature ; 630(8016): 447-456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839969

RESUMO

Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health1. This is compounded by the limited efficacy of available treatments1 and high failure rates during drug development2, highlighting an urgent need to better understand disease mechanisms. Here we show how functional genomics could address this challenge. By investigating an intergenic haplotype on chr21q22-which has been independently linked to inflammatory bowel disease, ankylosing spondylitis, primary sclerosing cholangitis and Takayasu's arteritis3-6-we identify that the causal gene, ETS2, is a central regulator of human inflammatory macrophages and delineate the shared disease mechanism that amplifies ETS2 expression. Genes regulated by ETS2 were prominently expressed in diseased tissues and more enriched for inflammatory bowel disease GWAS hits than most previously described pathways. Overexpressing ETS2 in resting macrophages reproduced the inflammatory state observed in chr21q22-associated diseases, with upregulation of multiple drug targets, including TNF and IL-23. Using a database of cellular signatures7, we identified drugs that might modulate this pathway and validated the potent anti-inflammatory activity of one class of small molecules in vitro and ex vivo. Together, this illustrates the power of functional genomics, applied directly in primary human cells, to identify immune-mediated disease mechanisms and potential therapeutic opportunities.


Assuntos
Inflamação , Macrófagos , Proteína Proto-Oncogênica c-ets-2 , Feminino , Humanos , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Cromossomos Humanos Par 21/genética , Bases de Dados Factuais , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Haplótipos/genética , Inflamação/genética , Doenças Inflamatórias Intestinais/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Reprodutibilidade dos Testes , Fatores de Necrose Tumoral/metabolismo , Interleucina-23/metabolismo
11.
Nature ; 608(7922): 381-389, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896749

RESUMO

Working memory-the brain's ability to internalize information and use it flexibly to guide behaviour-is an essential component of cognition. Although activity related to working memory has been observed in several brain regions1-3, how neural populations actually represent working memory4-7 and the mechanisms by which this activity is maintained8-12 remain unclear13-15. Here we describe the neural implementation of visual working memory in mice alternating between a delayed non-match-to-sample task and a simple discrimination task that does not require working memory but has identical stimulus, movement and reward statistics. Transient optogenetic inactivations revealed that distributed areas of the neocortex were required selectively for the maintenance of working memory. Population activity in visual area AM and premotor area M2 during the delay period was dominated by orderly low-dimensional dynamics16,17 that were, however, independent of working memory. Instead, working memory representations were embedded in high-dimensional population activity, present in both cortical areas, persisted throughout the inter-stimulus delay period, and predicted behavioural responses during the working memory task. To test whether the distributed nature of working memory was dependent on reciprocal interactions between cortical regions18-20, we silenced one cortical area (AM or M2) while recording the feedback it received from the other. Transient inactivation of either area led to the selective disruption of inter-areal communication of working memory. Therefore, reciprocally interconnected cortical areas maintain bound high-dimensional representations of working memory.


Assuntos
Córtex Cerebral , Retroalimentação Fisiológica , Memória de Curto Prazo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Lobo Frontal/citologia , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Neocórtex/citologia , Neocórtex/fisiologia , Optogenética , Recompensa , Córtex Visual/citologia , Córtex Visual/fisiologia , Percepção Visual
12.
Nature ; 604(7906): 502-508, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396580

RESUMO

Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Alelos , Predisposição Genética para Doença/genética , Genômica , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
13.
EMBO J ; 42(24): e113240, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984430

RESUMO

Protein requirements of eukaryotic cells are ensured by proteostasis, which is mediated by tight control of TORC1 activity. Upon TORC1 inhibition, protein degradation is increased and protein synthesis is reduced through inhibition of translation initiation to maintain cell viability. Here, we show that the ribosome-associated complex (RAC)/Ssb chaperone system, composed of the HSP70 chaperone Ssb and its HSP40 co-chaperone Zuo1, is required to maintain proteostasis and cell viability under TORC1 inhibition in Saccharomyces cerevisiae. In the absence of Zuo1, translation does not decrease in response to the loss of TORC1 activity. A functional interaction between Zuo1 and Ssb is required for proper translational control and proteostasis maintenance upon TORC1 inhibition. Furthermore, we have shown that the rapid degradation of eIF4G following TORC1 inhibition is mediated by autophagy and is prevented in zuo1Δ cells, contributing to decreased survival in these conditions. We found that autophagy is defective in zuo1Δ cells, which impedes eIF4G degradation upon TORC1 inhibition. Our findings identify an essential role for RAC/Ssb in regulating translation in response to changes in TORC1 signalling.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Am J Hum Genet ; 111(2): 364-382, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272033

RESUMO

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomiopatia Dilatada , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coração , Transtornos do Neurodesenvolvimento/genética
15.
N Engl J Med ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38767244

RESUMO

BACKGROUND: The subcutaneous implantable cardioverter-defibrillator (ICD) is associated with fewer lead-related complications than a transvenous ICD; however, the subcutaneous ICD cannot provide bradycardia and antitachycardia pacing. Whether a modular pacing-defibrillator system comprising a leadless pacemaker in wireless communication with a subcutaneous ICD to provide antitachycardia and bradycardia pacing is safe remains unknown. METHODS: We conducted a multinational, single-group study that enrolled patients at risk for sudden death from ventricular arrhythmias and followed them for 6 months after implantation of a modular pacemaker-defibrillator system. The safety end point was freedom from leadless pacemaker-related major complications, evaluated against a performance goal of 86%. The two primary performance end points were successful communication between the pacemaker and the ICD (performance goal, 88%) and a pacing threshold of up to 2.0 V at a 0.4-msec pulse width (performance goal, 80%). RESULTS: We enrolled 293 patients, 162 of whom were in the 6-month end-point cohort and 151 of whom completed the 6-month follow-up period. The mean age of the patients was 60 years, 16.7% were women, and the mean (±SD) left ventricular ejection fraction was 33.1±12.6%. The percentage of patients who were free from leadless pacemaker-related major complications was 97.5%, which exceeded the prespecified performance goal. Wireless-device communication was successful in 98.8% of communication tests, which exceeded the prespecified goal. Of 151 patients, 147 (97.4%) had pacing thresholds of 2.0 V or less, which exceeded the prespecified goal. The percentage of episodes of arrhythmia that were successfully terminated by antitachycardia pacing was 61.3%, and there were no episodes for which antitachycardia pacing was not delivered owing to communication failure. Of 162 patients, 8 died (4.9%); none of the deaths were deemed to be related to arrhythmias or the implantation procedure. CONCLUSIONS: The leadless pacemaker in wireless communication with a subcutaneous ICD exceeded performance goals for freedom from major complications related to the leadless pacemaker, for communication between the leadless pacemaker and subcutaneous ICD, and for the percentage of patients with a pacing threshold up to 2.0 V at a 0.4-msec pulse width at 6 months. (Funded by Boston Scientific; MODULAR ATP ClinicalTrials.gov NCT04798768.).

16.
Cell ; 151(2): 239-43, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063115

RESUMO

I explain here why all scientists should feel obligated to do their part to support the community by advocating for the benefits of government investments in scientific research and training.


Assuntos
Biologia/legislação & jurisprudência , Pesquisa Biomédica/legislação & jurisprudência , Pesquisa Biomédica/economia , Governo Federal , National Institutes of Health (U.S.) , Política , Apoio à Pesquisa como Assunto , Sociedades Científicas , Estados Unidos
17.
Proc Natl Acad Sci U S A ; 121(24): e2321809121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38781227

RESUMO

The modern canon of open science consists of five "schools of thought" that justify unfettered access to the fruits of scientific research: i) public engagement, ii) democratic right of access, iii) efficiency of knowledge gain, iv) shared technology, and v) better assessment of impact. Here, we introduce a sixth school: due process. Due process under the law includes a right to "discovery" by a defendant of potentially exculpatory evidence held by the prosecution. When such evidence is scientific, due process becomes a Constitutional mandate for open science. To illustrate the significance of this new school, we present a case study from forensics, which centers on a federally funded investigation that reports summary statistics indicating that identification decisions made by forensic firearms examiners are highly accurate. Because of growing concern about validity of forensic methods, the larger scientific community called for public release of the complete analyzable dataset for independent audit and verification. Those in possession of the data opposed release for three years while summary statistics were used by prosecutors to gain admissibility of evidence in criminal trials. Those statistics paint an incomplete picture and hint at flaws in experimental design and analysis. Under the circumstances, withholding the underlying data in a criminal proceeding violates due process. Following the successful open-science model of drug validity testing through "clinical trials," which place strict requirements on experimental design and timing of data release, we argue for registered and open "forensic trials" to ensure transparency and accountability.


Assuntos
Ciências Forenses , Humanos , Ciências Forenses/métodos , Armas de Fogo/legislação & jurisprudência
18.
PLoS Genet ; 20(3): e1011210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536778

RESUMO

Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.


Assuntos
Processos de Determinação Sexual , Tilápia , Animais , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/metabolismo , Tilápia/genética
19.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557190

RESUMO

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Assuntos
Flores , Proteínas de Domínio MADS , Pisum sativum , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Ervilha/genética
20.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598338

RESUMO

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Assuntos
Nanoporos , Infecção por Zika virus , Zika virus , Animais , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Primatas/genética , Zika virus/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa