Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Lipid Res ; 63(6): 100208, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436499

RESUMO

The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.


Assuntos
COVID-19 , Antissépticos Bucais , Antivirais , Cetilpiridínio , Humanos , Lipídeos , Antissépticos Bucais/farmacologia , Povidona-Iodo , RNA Viral , SARS-CoV-2
2.
Mol Pharm ; 16(7): 3199-3207, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125239

RESUMO

Polymer masked-unmasked protein therapy (PUMPT) uses conjugation of a biodegradable polymer, such as dextrin, hyaluronic acid, or poly(l-glutamic acid), to mask a protein or peptide's activity; subsequent locally triggered degradation of the polymer at the target site regenerates bioactivity in a controllable fashion. Although the concept of PUMPT is well established, the relationship between protein unmasking and reinstatement of bioactivity is unclear. Here, we used dextrin-colistin conjugates to study the relationship between the molecular structure (degree of unmasking) and biological activity. Size exclusion chromatography was employed to collect fractions of differentially degraded conjugates and ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) employed to characterize the corresponding structures. Antimicrobial activity was studied using a minimum inhibitory concentration (MIC) assay and confocal laser scanning microscopy of LIVE/DEAD-stained biofilms with COMSTAT analysis. In vitro toxicity of the degraded conjugate was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. UPLC-MS revealed that the fully "unmasked" dextrin-colistin conjugate composed of colistin bound to at least one linker, whereas larger species were composed of colistin with varying lengths of glucose units attached. Increasing the degree of dextrin modification by succinoylation typically led to a greater number of linkers bound to colistin. Greater antimicrobial and antibiofilm activity were observed for the fully "unmasked" conjugate compared to the partially degraded species (MIC = 0.25 and 2-8 µg/mL, respectively), whereas dextrin conjugation reduced colistin's in vitro toxicity toward kidney cells, even after complete unmasking. This study highlights the importance of defining the structure-antimicrobial activity relationship for novel antibiotic derivatives and demonstrates the suitability of LC-MS to aid the design of biodegradable polymer-antibiotic conjugates.


Assuntos
Amilases/metabolismo , Colistina/química , Colistina/metabolismo , Dextrinas/química , Dextrinas/metabolismo , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Antibacterianos/química , Antibacterianos/metabolismo , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Gel , Escherichia coli/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/citologia , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Microscopia Confocal , Estrutura Molecular
3.
Biomacromolecules ; 20(8): 2953-2961, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31251598

RESUMO

Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing advantages for biomedical applications because of their customizable porosity, mechanical strength, translucency, and environmental biodegradability. Here, we investigated the growth of multispecies wound biofilms on CNF formulated as aerogels and films incorporating the low-molecular-weight alginate oligosaccharide OligoG CF-5/20 to evaluate their structural and antimicrobial properties. Overnight microbial cultures were adjusted to 2.8 × 109 colony-forming units (cfu) mL-1 in Mueller Hinton broth and growth rates of Pseudomonas aeruginosa PAO1 and Staphylococcus aureus 1061A monitored for 24 h in CNF dispersions sterilized by γ-irradiation. Two CNF formulations were prepared (20 g m-2) with CNF as air-dried films or freeze-dried aerogels, with or without incorporation of an antimicrobial alginate oligosaccharide (OligoG CF-5/20) as a surface coating or bionanocomposite, respectively. The materials were structurally characterized by scanning electron microscopy (SEM) and laser profilometry (LP). The antimicrobial properties of the formulations were assessed using single- and mixed-species biofilms grown on the materials and analyzed using LIVE/DEAD staining with confocal laser scanning microscopy (CLSM) and COMSTAT software. OligoG-CNF suspensions significantly decreased the growth of both bacterial strains at OligoG concentrations >2.58% (P < 0.05). SEM showed that aerogel-OligoG bionanocomposite formulations had a more open three-dimensional structure, whereas LP showed that film formulations coated with OligoG were significantly smoother than untreated films or films incorporating PEG400 as a plasticizer (P < 0.05). CLSM of biofilms grown on films incorporating OligoG demonstrated altered biofilm architecture, with reduced biomass and decreased cell viability. The OligoG-CNF formulations as aerogels or films both inhibited pyocyanin production (P < 0.05). These novel CNF formulations or bionanocomposites were able to modify bacterial growth, biofilm development, and virulence factor production in vitro. These data support the potential of OligoG and CNF bionanocomposites for use in biomedical applications where prevention of infection or biofilm growth is required.


Assuntos
Alginatos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Celulose/química , Nanofibras/química , Oligossacarídeos/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Composição de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Peso Molecular , Oligossacarídeos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29463534

RESUMO

Pseudomonas aeruginosa plays a major role in many chronic infections. Its ability to readily form biofilms contributes to its success as an opportunistic pathogen and its resistance/tolerance to antimicrobial/antibiotic therapy. A low-molecular-weight alginate oligomer (OligoG CF-5/20) derived from marine algae has previously been shown to impair motility in P. aeruginosa biofilms and disrupt pseudomonal biofilm assembly. As these bacterial phenotypes are regulated by quorum sensing (QS), we hypothesized that OligoG CF-5/20 may induce alterations in QS signaling in P. aeruginosa QS regulation was studied by using Chromobacterium violaceum CV026 biosensor assays that showed a significant reduction in acyl homoserine lactone (AHL) production following OligoG CF-5/20 treatment (≥2%; P < 0.05). This effect was confirmed by liquid chromatography-mass spectrometry analysis of C4-AHL and 3-oxo-C12-AHL production (≥2%; P < 0.05). Moreover, quantitative PCR showed that reduced expression of both the las and rhl systems was induced following 24 h of treatment with OligoG CF-5/20 (≥0.2%; P < 0.05). Circular dichroism spectroscopy indicated that these alterations were not due to steric interaction between the AHL and OligoG CF-5/20. Confocal laser scanning microscopy (CLSM) and COMSTAT image analysis demonstrated that OligoG CF-5/20-treated biofilms had a dose-dependent decrease in biomass that was associated with inhibition of extracellular DNA synthesis (≥0.5%; P < 0.05). These changes correlated with alterations in the extracellular production of the pseudomonal virulence factors pyocyanin, rhamnolipids, elastase, and total protease (P < 0.05). The ability of OligoG CF-5/20 to modify QS signaling in P. aeruginosa PAO1 may influence critical downstream functions such as virulence factor production and biofilm formation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Pseudomonas aeruginosa/metabolismo
5.
Philos Trans A Math Phys Eng Sci ; 376(2134)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373944

RESUMO

This paper reviews recent progress in the measurement and modelling of stochastic electromagnetic fields, focusing on propagation approaches based on Wigner functions and the method of moments technique. The respective propagation methods are exemplified by application to measurements of electromagnetic emissions from a stirred, cavity-backed aperture. We discuss early elements of statistical electromagnetics in Heaviside's papers, driven mainly by an analogy of electromagnetic wave propagation with heat transfer. These ideas include concepts of momentum and directionality in the realm of propagation through confined media with irregular boundaries. We then review and extend concepts using Wigner functions to propagate the statistical properties of electromagnetic fields. We discuss in particular how to include polarization in this formalism leading to a Wigner tensor formulation and a relation to an averaged Poynting vector.This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.

6.
Int J Mol Sci ; 19(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584680

RESUMO

Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Modelos Biológicos , Dermatopatias/patologia , Telomerase/metabolismo , Experimentação Animal , Proliferação de Células , Células Cultivadas , Senescência Celular , Doença Crônica , Fibroblastos/química , Fibroblastos/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenótipo , Dermatopatias/genética , Cicatrização
7.
Artigo em Inglês | MEDLINE | ID: mdl-28630204

RESUMO

In chronic respiratory disease, the formation of dense, 3-dimensional "microcolonies" by Pseudomonas aeruginosa within the airway plays an important role in contributing to resistance to treatment. An in vitro biofilm model of pseudomonal microcolony formation using artificial-sputum (AS) medium was established to study the effects of low-molecular-weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation, and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates (n = 3) and reference nonmucoid and mucoid multidrug-resistant (MDR) CF isolates (n = 7). Bacterial growth and biofilm development and disruption were studied using cell viability assays and image analysis with scanning electron and confocal laser scanning microscopy. Pseudomonal growth in AS medium was associated with increased ATP production (P < 0.05) and the formation (at 48 h) of discrete (>10-µm) microcolonies. In conventional growth medium, colistin retained an ability to inhibit growth of planktonic bacteria, although the MIC was increased (0.1 to 0.4 µg/ml) in AS medium compared to Mueller-Hinton (MH) medium. In contrast, in an established-biofilm model in AS medium, the efficacy of colistin was decreased. OligoG CF-5/20 (≥2%) treatment, however, induced dose-dependent biofilm disruption (P < 0.05) and led to colistin retaining its antimicrobial activity (P < 0.05). While circular dichroism indicated that OligoG CF-5/20 did not change the orientation of the alginate carboxyl groups, mass spectrometry demonstrated that the oligomers induced dose-dependent (>0.2%; P < 0.05) reductions in pseudomonal quorum-sensing signaling. These findings reinforce the potential clinical significance of microcolony formation in the CF lung and highlight a novel approach to treat MDR pseudomonal infections.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Colistina/farmacologia , Oligossacarídeos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Escarro/microbiologia
8.
Mol Pharm ; 13(3): 863-72, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26833139

RESUMO

The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12-15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins. Ex vivo studies showed binding induced alterations in mucin surface charge and porosity of the three-dimensional mucin networks in cystic fibrosis (CF) sputum. Human studies showed that OligoG CF-5/20 is safe for inhalation in CF patients with effective lung deposition and modifies the viscoelasticity of CF-sputum. OligoG CF-5/20 is the first inhaled polymer therapy, represents a novel mechanism of action and therapeutic approach for the treatment of chronic respiratory disease, and is currently in Phase IIb clinical trials for the treatment of CF.


Assuntos
Alginatos/química , Fibrose Cística/tratamento farmacológico , Mucinas/química , Muco/química , Oligossacarídeos/química , Polímeros/farmacologia , Adolescente , Adulto , Alginatos/metabolismo , Animais , Doença Crônica , Ensaios Clínicos Fase I como Assunto , Feminino , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Humanos , Masculino , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Mucinas/metabolismo , Muco/metabolismo , Oligossacarídeos/metabolismo , Polímeros/química , Ratos , Ratos Sprague-Dawley , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Escarro/química , Suínos , Adulto Jovem
9.
Bioelectromagnetics ; 37(2): 116-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26879225

RESUMO

Potential health effects of radiofrequency (RF) radiation from mobile phones arouse widespread public concern. RF fields from handheld devices near the brain might trigger or aggravate brain tumors or neurodegenerative diseases such as Parkinson's disease (PD). Aggregation of neural α-synuclein (S) is central to PD pathophysiology, and invertebrate models expressing human S have helped elucidate factors affecting the aggregation process. We have recently developed a transgenic strain of Caenorhabditis elegans carrying two S constructs: SC tagged with cyan (C) blue fluorescent protein (CFP), and SV with the Venus (V) variant of yellow fluorescent protein (YFP). During S aggregation in these SC+SV worms, CFP, and YFP tags are brought close enough to allow Foerster Resonance Energy Transfer (FRET). As a positive control, S aggregation was promoted at low Hg(2+) concentrations, whereas higher concentrations activated stress-response genes. Using two different exposure systems described previously, we tested whether RF fields (1.0 GHz CW, 0.002-0.02 W kg(-1); 1.8 GHz CW or GSM, 1.8 W kg(-1)) could influence S aggregation in SC+SV worms. YFP fluorescence in similar SV-only worms provided internal controls, which should show opposite changes due to FRET quenching during S aggregation. No statistically significant changes were observed over several independent runs at 2.5, 24, or 96 h. Although our worm model is sensitive to chemical promoters of aggregation, no similar effects were attributable to RF exposures.


Assuntos
Caenorhabditis elegans , Micro-Ondas , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/química , Animais , Modelos Animais de Doenças , Radiometria
10.
Antimicrob Agents Chemother ; 59(4): 1837-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512401

RESUMO

This study describes the use of a novel, two-compartment, static dialysis bag model to study the release, diffusion, and antibacterial activity of a novel, bioresponsive dextrin-colistin polymer conjugate against multidrug resistant (MDR) wild-type Acinetobacter baumannii. In this model, colistin sulfate, at its MIC, produced a rapid and extensive drop in viable bacterial counts (<2 log10 CFU/ml at 4 h); however, a marked recovery was observed thereafter, with regrowth equivalent to that of control by 48 h. In contrast, dextrin-colistin conjugate, at its MIC, suppressed bacterial growth for up to 48 h, with 3 log10 CFU/ml lower bacterial counts after 48 h than those of controls. Doubling the concentration of dextrin-colistin conjugate (to 2× MIC) led to an initial bacterial killing of 3 log10 CFU/ml at 8 h, with a similar regrowth profile to 1× MIC treatment thereafter. The addition of colistin sulfate (1× MIC) to dextrin-colistin conjugate (1× MIC) resulted in undetectable bacterial counts after 4 h, followed by suppressed bacterial growth (3.5 log10 CFU/ml lower than that of control at 48 h). Incubation of dextrin-colistin conjugates with infected wound exudate from a series of burn patients (n = 6) revealed an increasing concentration of unmasked colistin in the outer compartment (OC) over time (up to 86.3% of the initial dose at 48 h), confirming that colistin would be liberated from the conjugate by endogenous α-amylase within the wound environment. These studies confirm the utility of this model system to simulate the pharmacokinetics of colistin formation in humans administered dextrin-colistin conjugates and further supports the development of antibiotic polymer conjugates in the treatment of MDR infections.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/farmacocinética , Testes de Sensibilidade Microbiana/métodos , Polímeros/farmacologia , Polímeros/farmacocinética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/química , Carga Bacteriana , Queimaduras/enzimologia , Colistina/farmacologia , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Humanos , Modelos Biológicos , Polímeros/química , Reprodutibilidade dos Testes , Infecção dos Ferimentos/microbiologia , alfa-Amilases/metabolismo
11.
Am J Respir Cell Mol Biol ; 50(3): 483-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24074505

RESUMO

Pseudomonas aeruginosa (PA) biofilm-associated infections are a common cause of morbidity in chronic respiratory disease and represent a therapeutic challenge. Recently, the ability of a novel alginate oligomer (OligoG) to potentiate the effect of antibiotics against gram-negative, multi-drug-resistant bacteria and inhibit biofilm formation in vitro has been described. Interaction of OligoG with the cell surface of PA was characterized at the nanoscale using atomic force microscopy (AFM), zeta potential measurement (surface charge), and sizing measurements (dynamic light scattering). The ability of OligoG to modify motility was studied in motility assays. AFM demonstrated binding of OligoG to the bacterial cell surface, which was irreversible after exposure to hydrodynamic shear (5,500 × g). Zeta potential analysis (pH 5-9; 0.1-0.001 M NaCl) demonstrated that binding was associated with marked changes in the bacterial surface charge (-30.9 ± 0.8 to -47.0 ± 2.3 mV; 0.01 M NaCl [pH 5]; P < 0.001). Sizing analysis demonstrated that alteration of surface charge was associated with cell aggregation with a 2- to 3-fold increase in mean particle size at OligoG concentrations greater than 2% (914 ± 284 to 2599 ± 472 nm; 0.01 M NaCl [pH 5]; P < 0.001). These changes were associated with marked dose-dependent inhibition in bacterial swarming motility in PA and Burkholderia spp. The ability of OligoG to bind to a bacterial surface, modulate surface charge, induce microbial aggregation, and inhibit motility represents important direct mechanisms by which antibiotic potentiation and biofilm disruption is affected. These results highlight the value of combining multiple nanoscale technologies to further our understanding of the mechanisms of action of novel antibacterial therapies.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanomedicina , Pseudomonas aeruginosa/efeitos dos fármacos , Alginatos/química , Antibacterianos/química , Burkholderia/efeitos dos fármacos , Burkholderia/crescimento & desenvolvimento , Química Farmacêutica , Relação Dose-Resposta a Droga , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Luz , Microscopia de Força Atômica , Nanomedicina/métodos , Nanopartículas , Pseudomonas aeruginosa/fisiologia , Espalhamento de Radiação , Propriedades de Superfície
12.
Mol Pharm ; 11(12): 4437-47, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360900

RESUMO

Polymer therapeutics offer potential benefits in the treatment of multidrug resistant (MDR) infections; affording targeted delivery of biologically active agents to the site of inflammation, potential decreases in systemic toxicity, and the retention of antimicrobial activity at the target site. As a prototype model, these studies developed and characterized a library of dextrin-colistin conjugates (dextrin molecular weight: 7500-48,000 g/mol) as a means of targeting the delivery of colistin. Optimum colistin release kinetics (following dextrin degradation by physiological concentrations of amylase (100 IU/L)) were observed in conjugates containing low molecular weight (∼7500 g/mol) dextrin with ∼1 mol % succinoylation (∼80% drug release within 48 h, compared to ∼33% from sodium colistin methanesulfonate (CMS, Colomycin)). These conjugates exhibited comparable antimicrobial activity to CMS in conventional MIC assays against a range of Gram-negative pathogens, but with significantly reduced in vitro toxicity toward kidney (IC50 = CMS, 15.4 µg/mL; dextrin-colistin, 63.9 µg/mL) and macrophage (IC50 = CMS, 111.3 µg/mL; dextrin-colistin, 303.9 µg/mL) cells. In vivo dose-escalation studies in rats demonstrated improved pharmacokinetics of the conjugates, with prolonged plasma levels of colistin (t1/2 135-1271 min vs 53 min) and decreased toxicity, compared to colistin sulfate. These studies highlight the potential utility of "nanoantibiotic" polymer therapeutics to aid the safe, effective, and targeted delivery of colistin in the management of MDR infections.


Assuntos
Antibacterianos/química , Colistina/química , Dextrinas/química , Nanomedicina/métodos , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Dextrinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Polímeros/química , Ratos
13.
Wound Repair Regen ; 22(3): 399-405, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24844339

RESUMO

There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF < NF < CWF are candidates for a negative/impaired healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds.


Assuntos
Cicatriz/patologia , Fibroblastos/patologia , Úlcera da Perna/patologia , Mucosa Bucal/patologia , Pele/patologia , Cicatrização , Adulto , Proliferação de Células , Doença Crônica , Cicatriz/genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Análise em Microsséries , Cicatrização/genética
14.
Wound Repair Regen ; 22(1): 58-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24354589

RESUMO

Within chronic wounds, the relationship between the clinical diagnosis of infection and bacterial/immuno-inflammatory responses is imprecise. This study prospectively examined the interrelationship between clinical, microbiological, and proinflammatory biomarker levels between chronic venous leg ulcers (CVLUs) and diabetic foot ulcers (DFUs). Wound swabs and fluids were collected from CVLUs (n = 18) and DFUs (n = 15) and diagnosed clinically as noninfected or infected; and qualitative/quantitative microbiology was performed. CVLU and DFU fluids were also analyzed for cytokine, growth factor, receptor, proteinase/proteinase inhibitor; and oxidative stress biomarker (protein carbonyl, malondialdehyde, and antioxidant capacity) levels. While no correlations existed between clinical diagnosis, microbiology, or biomarker profiles, increasing bacterial bioburden (≥10(7) colony-forming unit/mL) was associated with significant alterations in cytokine, growth factor, and receptor levels. These responses contrasted between ulcer type, with elevated and decreased cytokine, growth factor, and receptor levels in CVLUs and DFUs with increasing bioburden, respectively. Despite proteinase biomarkers exhibiting few differences between CVLUs and DFUs, significant elevations in antioxidant capacities correlated with increased bioburden in CVLU fluids, but not in DFUs. Furthermore, oxidative stress biomarker levels were significantly elevated in all DFU fluids compared with CVLUs. This study provides further insight into the contrasting disease-specific host responses to bacterial challenge within infected CVLUs and DFUs.


Assuntos
Pé Diabético/patologia , Exsudatos e Transudatos/microbiologia , Inflamação/patologia , Úlcera Varicosa/patologia , Cicatrização , Infecção dos Ferimentos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/metabolismo , Pé Diabético/imunologia , Pé Diabético/microbiologia , Exsudatos e Transudatos/imunologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Inflamação/imunologia , Inflamação/microbiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores de Superfície Celular/metabolismo , Resultado do Tratamento , Úlcera Varicosa/imunologia , Úlcera Varicosa/microbiologia , Cicatrização/imunologia , Infecção dos Ferimentos/imunologia , Infecção dos Ferimentos/microbiologia
15.
Int J Nanomedicine ; 19: 5419-5437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868592

RESUMO

Introduction: Acute myeloid leukemia (AML) remains difficult to treat due to its heterogeneity in molecular landscape, epigenetics and cell signaling alterations. Precision medicine is a major goal in AML therapy towards developing agents that can be used to treat patients with different 'subtypes' in combination with current chemotherapies. We have previously developed dextrin-colistin conjugates to combat the rise in multi-drug resistant bacterial infections and overcome dose-limiting nephrotoxicity. Recent evidence of colistin's anticancer activity, mediated through inhibition of intracellular lysine-specific histone demethylase 1 (LSD1/KDM1A), suggests that dextrin-colistin conjugates could be used to treat cancer cells, including AML. This study aimed to evaluate whether dextrin conjugation (which reduces in vivo toxicity and prolongs plasma half-life) could enhance colistin's cytotoxic effects in myeloid leukemia cell lines and compare the intracellular uptake and localization of the free and conjugated antibiotic. Results: Our results identified a conjugate (containing 8000 g/mol dextrin with 1 mol% succinoylation) that caused significantly increased toxicity in myeloid leukemia cells, compared to free colistin. Dextrin conjugation altered the mechanism of cell death by colistin, from necrosis to caspase 3/7-dependent apoptosis. In contrast, conjugation via a reversible ester linker, instead of an amide, had no effect on the mechanism of the colistin-induced cell death. Live cell confocal microscopy of fluorescently labelled compounds showed both free and dextrin-conjugated colistins were endocytosed and co-localized in lysosomes, and increasing the degree of modification by succinoylation of dextrin significantly reduced colistin internalization. Discussion: Whilst clinical translation of dextrin-colistin conjugates for the treatment of AML is unlikely due to the potential to promote antimicrobial resistance (AMR) and the relatively high colistin concentrations required for anticancer activity, the ability to potentiate the effectiveness of an anticancer drug by polymer conjugation, while reducing side effects and improving biodistribution of the drug, is very attractive, and this approach warrants further investigation.


Assuntos
Apoptose , Colistina , Dextrinas , Colistina/farmacologia , Colistina/química , Colistina/farmacocinética , Dextrinas/química , Dextrinas/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Sobrevivência Celular/efeitos dos fármacos
16.
RSC Pharm ; 1(1): 68-79, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646595

RESUMO

The acute kidney injury (AKI) and dose-limiting nephrotoxicity, which occurs in 20-60% of patients following systemic administration of colistin, represents a challenge in the effective treatment of multi-drug resistant Gram-negative infections. To reduce clinical toxicity of colistin and improve targeting to infected/inflamed tissues, we previously developed dextrin-colistin conjugates, whereby colistin is designed to be released by amylase-triggered degradation of dextrin in infected and inflamed tissues, after passive targeting by the enhanced permeability and retention effect. Whilst it was evident in vitro that polymer conjugation can reduce toxicity and prolong plasma half-life, without significant reduction in antimicrobial activity of colistin, it was unclear how dextrin conjugation would alter cellular uptake and localisation of colistin in renal tubular cells in vivo. We discovered that dextrin conjugation effectively reduced colistin's toxicity towards human kidney proximal tubular epithelial cells (HK-2) in vitro, which was mirrored by significantly less cellular uptake of Oregon Green (OG)-labelled dextrin-colistin conjugate, when compared to colistin. Using live-cell confocal imaging, we revealed localisation of both, free and dextrin-bound colistin in endolysosome compartments of HK-2 and NRK-52E cells. Using a murine AKI model, we demonstrated dextrin-colistin conjugation dramatically diminishes both proximal tubular injury and renal accumulation of colistin. These findings reveal new insight into the mechanism by which dextrin conjugation can overcome colistin's renal toxicity and show the potential of polymer conjugation to improve the side effect profile of nephrotoxic drugs.

17.
J Antimicrob Chemother ; 68(2): 257-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23054997

RESUMO

Multidrug-resistant, Gram-negative infection is a major global determinant of morbidity, mortality and cost of care. The advent of nanomedicine has enabled tailored engineering of macromolecular constructs, permitting increasingly selective targeting, alteration of volume of distribution and activity/toxicity. Macromolecules tend to passively and preferentially accumulate at sites of enhanced vascular permeability and are then retained. This enhanced permeability and retention (EPR) effect, whilst recognized as a major breakthrough in anti-tumoral targeting, has not yet been fully exploited in infection. Shared pathophysiological pathways in both cancer and infection are evident and a number of novel nanomedicines have shown promise in selective, passive, size-mediated targeting to infection. This review describes the similarities and parallels in pathophysiological pathways at molecular, cellular and circulatory levels between inflammation/infection and cancer therapy, where use of this principle has been established.


Assuntos
Antibacterianos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Nanomedicina/métodos , Permeabilidade , Antibacterianos/administração & dosagem , Humanos
18.
Biofouling ; 29(4): 413-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23574333

RESUMO

The influence of a novel, safe antibiofilm therapy on the mechanical properties of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms in vitro was characterized. A multiscale approach employing atomic force microscopy (AFM) and rheometry was used to quantify the mechanical disruption of the biofilms by a therapeutic polymer based on a low-molecular weight alginate oligosaccharide (OligoG). AFM demonstrated structural alterations in the biofilms exposed to OligoG, with significantly lower Young's moduli than the untreated biofilms, (149 MPa vs 242 MPa; p < 0.05), a decreased resistance to hydrodynamic shear and an increased surface irregularity (Ra) in the untreated controls (35.2 nm ± 7.6 vs 12.1 nm ± 5.4; p < 0.05). Rheology demonstrated that increasing clinically relevant concentrations of OligoG (<10%) were associated with an increasing phase angle (δ) over a wide range of frequencies (0.1-10 Hz). These results highlight the utility of these techniques for the study of three-dimensional biofilms and for quantifying novel disruption therapies in vitro.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Alginatos/farmacologia , Biofilmes/efeitos dos fármacos , Oligossacarídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Alginatos/química , Alginatos/isolamento & purificação , Aderência Bacteriana/efeitos dos fármacos , Fenômenos Biomecânicos , Módulo de Elasticidade , Hidrodinâmica , Laminaria/química , Testes de Sensibilidade Microbiana , Oligossacarídeos/química , Pseudomonas aeruginosa/fisiologia , Reologia/métodos , Resistência ao Cisalhamento/efeitos dos fármacos , Estresse Mecânico
19.
Sci Rep ; 13(1): 10001, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340066

RESUMO

The double-ended impedance-based fault location technique (DEFLT) uses the wideband frequency content of the transient generated by the fault to determine the impedance from the point of measurement to the fault. This paper evaluates and develops the DEFLT experimentally for a Shipboard Power System (SPS) to determine its robustness to source impedance, the presence of interconnected loads ("tapped" loads) and tapped lines. Results demonstrate that the estimated impedance (and therefore distance to the fault) is influenced by the presence of tapped loads when the source impedance is large, or when the tapped load is comparable to the rated load of the system. Therefore, a scheme is proposed that compensates for any tapped load without requiring any additional measurements. Using the proposed scheme, the maximum error is significantly reduced from 92 to 13%. Simulation and experimental results show that a high accuracy for the estimated fault location can be achieved.

20.
J Oral Microbiol ; 15(1): 2241326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534218

RESUMO

Background: Peri-implantitis has become an inexorable clinical challenge in implantology. Topical immunomodulatory epoxy-tiglianes (EBCs), derived from the Queensland blushwood tree, which induce remodeling and resolve dermal infection via induction of the inflammasome and biofilm disruption, may offer a novel therapeutic approach. Design: In vitro antimicrobial activity of EBC structures (EBC-46, EBC-1013 and EBC-147) against Streptococcus mutans, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in minimum inhibitory concentration, growth curve and permeabilization assays were determined. Antibiofilm activity was assessed using minimum biofilm eradication concentration (MBEC) experiments. Biofilm formation and disruption assays were analyzed using confocal laser scanning microscopy, scanning electron microscopy and direct plate counting. Results: The observed antimicrobial efficacy of the tested compounds (EBC-1013 > EBC-46 > EBC-147) was directly related to significant membrane permeabilization and growth inhibition (p < 0.05) against planktonic S. mutans and P. gingivalis. Antibiofilm activity was evident in MBEC assays, with S. mutans biofilm formation assays revealing significantly lower biomass volume and increased DEAD:LIVE cell ratio observed for EBC-1013 (p < 0.05). Furthermore, biofilm disruption assays on titanium discs induced significant biofilm disruption in S. mutans and P. gingivalis (p < 0.05). Conclusions: EBC-1013 is a safe, semi-synthetic, compound, demonstrating clear antimicrobial biofilm disruption potential in peri-implantitis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa