Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 22(22): 4616-26, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23814041

RESUMO

Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.


Assuntos
Colesterol/biossíntese , Drosophila melanogaster/metabolismo , Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Neuropeptídeos/metabolismo , Polímeros/metabolismo , Serpinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Drosophila melanogaster/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Células HeLa , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Camundongos , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Desdobramento de Proteína , Serpinas/genética , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Resposta a Proteínas não Dobradas , Neuroserpina
2.
J Cell Sci ; 126(Pt 6): 1406-15, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23418347

RESUMO

Phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by the kinase GCN2 attenuates protein synthesis during amino acid starvation in yeast, whereas in mammals a family of related eIF2α kinases regulate translation in response to a variety of stresses. Unlike single-celled eukaryotes, mammals also possess two specific eIF2α phosphatases, PPP1R15a and PPP1R15b, whose combined deletion leads to a poorly understood early embryonic lethality. We report the characterisation of the first non-mammalian eIF2α phosphatase and the use of Drosophila to dissect its role during development. The Drosophila protein demonstrates features of both mammalian proteins, including limited sequence homology and association with the endoplasmic reticulum. Of note, although this protein is not transcriptionally regulated, its expression is controlled by the presence of upstream open reading frames in its 5'UTR, enabling induction in response to eIF2α phosphorylation. Moreover, we show that its expression is necessary for embryonic and larval development and that this is to oppose the inhibitory effects of GCN2 on anabolic growth.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/metabolismo , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosforilação/genética , Proteínas Quinases/genética , Proteína Fosfatase 1/genética , Processamento Pós-Transcricional do RNA/genética , Homologia de Sequência de Aminoácidos
3.
J Biol Chem ; 288(11): 7606-7617, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23341460

RESUMO

Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Genes p53 , Proteína Supressora de Tumor p53/genética , Animais , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular , Drosophila melanogaster , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Plasmídeos/metabolismo , Biossíntese de Proteínas , Proteína Fosfatase 1/metabolismo , Interferência de RNA , Proteína Supressora de Tumor p53/metabolismo
4.
J Biol Chem ; 286(6): 4248-56, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21147772

RESUMO

We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid ß (Aß) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aß. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aß aggregation. We find that iron slows the progression of the Aß peptide from an unstructured conformation to the ordered cross-ß fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aß toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aß and so promotes its toxicity in Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Doença de Alzheimer/genética , Amiloide/genética , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Drosophila melanogaster , Ferritinas/genética , Humanos
5.
J Cell Sci ; 123(Pt 17): 2892-900, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20682638

RESUMO

The integrated stress response (ISR) protects cells from numerous forms of stress and is involved in the growth of solid tumours; however, it is unclear how the ISR acts on cellular proliferation. We have developed a model of ISR signalling with which to study its effects on tissue growth. Overexpression of the ISR kinase PERK resulted in a striking atrophic eye phenotype in Drosophila melanogaster that could be rescued by co-expressing the eIF2alpha phosphatase GADD34. A genetic screen of 3000 transposon insertions identified grapes, the gene that encodes the Drosophila orthologue of checkpoint kinase 1 (CHK1). Knockdown of grapes by RNAi rescued eye development despite ongoing PERK activation. In mammalian cells, CHK1 was activated by agents that induce ER stress, which resulted in a G2 cell cycle delay. PERK was both necessary and sufficient for CHK1 activation. These findings indicate that non-genotoxic misfolded protein stress accesses DNA-damage-induced cell cycle checkpoints to couple the ISR to cell cycle arrest.


Assuntos
Proteínas Quinases/fisiologia , Estresse Fisiológico/fisiologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células , Quinase 1 do Ponto de Checagem , Dano ao DNA , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/fisiologia , Ativação Enzimática , Olho/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Estresse Fisiológico/genética , Fosfatases cdc25/metabolismo , eIF-2 Quinase/biossíntese , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
6.
Diabetes Metab Res Rev ; 26(8): 611-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20922715

RESUMO

Endoplasmic reticulum (ER) stress is an integral part of life for all professional secretory cells, but it has been studied to greatest depth in the pancreatic ß-cell. This reflects both the crucial role played by ER stress in the pathogenesis of diabetes and also the exquisite vulnerability of these cells to ER dysfunction. The adaptive cellular response to ER stress, the unfolded protein response, comprises mechanisms to both regulate new protein translation and a transcriptional program to allow adaptation to the stress. The core of this response is a triad of stress-sensing proteins: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6. All three regulate portions of the transcriptional unfolded protein response, while PERK also attenuates protein synthesis during ER stress and IRE1 interacts directly with the c-Jun amino-terminal kinase stress kinase pathway. In this review we shall discuss these processes in detail, with emphasis given to their impact on diabetes and how recent findings indicate that ER stress may be responsible for the loss of ß-cell mass in the disease.


Assuntos
Fator 6 Ativador da Transcrição/fisiologia , Diabetes Mellitus/fisiopatologia , Retículo Endoplasmático/fisiologia , Endorribonucleases/fisiologia , Ilhotas Pancreáticas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Estresse Fisiológico/fisiologia , Animais , Proteínas de Ligação a DNA/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Epífises/anormalidades , Epífises/fisiopatologia , Glicoproteínas/fisiologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Camundongos , Osteocondrodisplasias/fisiopatologia , Oxirredutases , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/fisiologia , Resposta a Proteínas não Dobradas
7.
World J Diabetes ; 2(7): 114-8, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21860696

RESUMO

Both environmental and genetic factors contribute to the development of diabetes mellitus and although monogenic disorders are rare, they offer unique insights into the fundamental biology underlying the disease. Mutations of the insulin gene or genes involved in the response to protein misfolding cause early onset diabetes. These have revealed an important role for endoplasmic reticulum stress in ß-cell survival. This form of cellular stress occurs when secretory proteins fail to fold efficiently. Of all the professional secretory cells we possess, ß-cells are the most sensitive to endoplasmic reticulum stress because of the large fluctuations in protein synthesis they face daily. Studies of endoplasmic reticulum stress signaling therefore offer the potential to identify new drug targets to treat diabetes.

8.
Methods Enzymol ; 501: 421-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22078544

RESUMO

The serpinopathies result from point mutations in members of the serine protease inhibitor or serpin superfamily. They are characterized by the formation of ordered polymers that are retained within the cell of synthesis. This causes disease by a "toxic gain of function" from the accumulated protein and a "loss of function" as a result of the deficiency of inhibitors that control important proteolytic cascades. The serpinopathies are exemplified by the Z (Glu342Lys) mutant of α1-antitrypsin that results in the retention of ordered polymers within the endoplasmic reticulum of hepatocytes. These polymers form the intracellular inclusions that are associated with neonatal hepatitis, cirrhosis, and hepatocellular carcinoma. A second example results from mutations in the neurone-specific serpin-neuroserpin to form ordered polymers that are retained as inclusions within subcortical neurones as Collins' bodies. These inclusions underlie the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. There are different pathways to polymer formation in vitro but not all form polymers that are relevant in vivo. It is therefore essential that protein-based structural studies are interpreted in the context of human samples and cell and animal models of disease. We describe here the biochemical techniques, monoclonal antibodies, cell biology, animal models, and stem cell technology that are useful to characterize the serpin polymers that form in vivo.


Assuntos
Biofísica/métodos , Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Pulmão/metabolismo , Neuropeptídeos/metabolismo , Mutação Puntual , Serpinas/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Neuropeptídeos/química , Neuropeptídeos/genética , Neutrófilos/citologia , Neutrófilos/metabolismo , Fragmentos de Peptídeos , Polimerização , Ligação Proteica , Conformação Proteica , Proteólise , Serpinas/química , Serpinas/genética , Transfecção , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Neuroserpina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa