Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 31(9): 1987-1995, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660969

RESUMO

BACKGROUND: A state of oxalate homeostasis is maintained in patients with healthy kidney function. However, as GFR declines, plasma oxalate (Pox) concentrations start to rise. Several groups of researchers have described augmentation of oxalate secretion in the colon in models of CKD, but the oxalate transporters remain unidentified. The oxalate transporter Slc26a6 is a candidate for contributing to the extrarenal clearance of oxalate via the gut in CKD. METHODS: Feeding a diet high in soluble oxalate or weekly injections of aristolochic acid induced CKD in age- and sex-matched wild-type and Slc26a6-/- mice. qPCR, immunohistochemistry, and western blot analysis assessed intestinal Slc26a6 expression. An oxalate oxidase assay measured fecal and Pox concentrations. RESULTS: Fecal oxalate excretion was enhanced in wild-type mice with CKD. This increase was abrogated in Slc26a6-/- mice associated with a significant elevation in plasma oxalate concentration. Slc26a6 mRNA and protein expression were greatly increased in the intestine of mice with CKD. Raising Pox without inducing kidney injury did not alter intestinal Slc26a6 expression, suggesting that changes associated with CKD regulate transporter expression rather than elevations in Pox. CONCLUSIONS: Slc26a6-mediated enteric oxalate secretion is critical in decreasing the body burden of oxalate in murine CKD models. Future studies are needed to address whether similar mechanisms contribute to intestinal oxalate elimination in humans to enhance extrarenal oxalate clearance.


Assuntos
Antiporters/fisiologia , Mucosa Intestinal/metabolismo , Oxalatos/sangue , Insuficiência Renal Crônica/metabolismo , Transportadores de Sulfato/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxalatos/metabolismo
2.
J Am Soc Nephrol ; 28(1): 242-249, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27313231

RESUMO

Patients with cystic fibrosis have an increased incidence of hyperoxaluria and calcium oxalate nephrolithiasis. Net intestinal absorption of dietary oxalate results from passive paracellular oxalate absorption as modified by oxalate back secretion mediated by the SLC26A6 oxalate transporter. We used mice deficient in the cystic fibrosis transmembrane conductance regulator gene (Cftr) to test the hypothesis that SLC26A6-mediated oxalate secretion is defective in cystic fibrosis. We mounted isolated intestinal tissue from C57BL/6 (wild-type) and Cftr-/- mice in Ussing chambers and measured transcellular secretion of [14C]oxalate. Intestinal tissue isolated from Cftr-/- mice exhibited significantly less transcellular oxalate secretion than intestinal tissue of wild-type mice. However, glucose absorption, another representative intestinal transport process, did not differ in Cftr-/- tissue. Compared with wild-type mice, Cftr-/- mice showed reduced expression of SLC26A6 in duodenum by immunofluorescence and Western blot analysis. Furthermore, coexpression of CFTR stimulated SLC26A6-mediated Cl--oxalate exchange in Xenopus oocytes. In association with the profound defect in intestinal oxalate secretion, Cftr-/- mice had serum and urine oxalate levels 2.5-fold greater than those of wild-type mice. We conclude that defective intestinal oxalate secretion mediated by SLC26A6 may contribute to the hyperoxaluria observed in this mouse model of cystic fibrosis. Future studies are needed to address whether similar mechanisms contribute to the increased risk for calcium oxalate stone formation observed in patients with cystic fibrosis.


Assuntos
Oxalato de Cálcio/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Mucosa Intestinal/metabolismo , Animais , Antiporters/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Hiperoxalúria/etiologia , Camundongos , Camundongos Knockout , Transportadores de Sulfato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa