Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nucl Med ; 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837069

RESUMO

Background: Radium-223 dichloride ([223Ra]RaCl2) is the first approved alpha particle-emitting therapy and is indicated for treatment of bone metastatic castrate resistant prostate cancer. Approximately half of the dose is absorbed into the gastrointestinal (GI) tract within minutes of administration, limiting disease-site uptake and contributing to toxicity. Here, we investigate the role of enteric ion channels and their modulation for improved therapeutic efficacy and reduced side effects. Methods: Utilizing primary human duodenal organoids (enteroids) as in vitro models of the functional GI epithelium, we found that Amiloride (ENaC blocker) and NS-1619 (K+ channel activator) presented significant effects in 223Ra membranal transport. The radioactive drug distribution was evaluated for lead combinations in vivo, and in osteosarcoma and prostate cancer models. Results: Amiloride shifted 223Ra uptake in vivo from the gut, to nearly double the uptake at sites of bone remodeling. Bone tumor growth inhibition with the combination as measured by bioluminescent and X-ray imaging was significantly greater than single agents alone, and the combination resulted in no weight loss. Conclusion: This combination of approved agents may be readily implemented as a clinical approach to improve outcomes of bone metastatic cancer patients with the benefit of ameliorated tolerability.

2.
Bone Res ; 6: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707402

RESUMO

Discriminating sterile inflammation from infection, especially in cases of aseptic loosening versus an actual prosthetic joint infection, is challenging and has significant treatment implications. Our goal was to evaluate a novel human monoclonal antibody (mAb) probe directed against the Gram-positive bacterial surface molecule lipoteichoic acid (LTA). Specificity and affinity were assessed in vitro. We then radiolabeled the anti-LTA mAb and evaluated its effectiveness as a diagnostic imaging tool for detecting infection via immunoPET imaging in an in vivo mouse model of prosthetic joint infection (PJI). In vitro and ex vivo binding of the anti-LTA mAb to pathogenic bacteria was measured with Octet, ELISA, and flow cytometry. The in vivo PJI mouse model was assessed using traditional imaging modalities, including positron emission tomography (PET) with [18F]FDG and [18F]NaF as well as X-ray computed tomography (CT), before being evaluated with the zirconium-89-labeled antibody specific for LTA ([89Zr]SAC55). The anti-LTA mAb exhibited specific binding in vitro to LTA-expressing bacteria. Results from imaging showed that our model could reliably simulate infection at the surgical site by bioluminescent imaging, conventional PET tracer imaging, and bone morphological changes by CT. One day following injection of both the radiolabeled anti-LTA and isotype control antibodies, the anti-LTA antibody demonstrated significantly greater (P < 0.05) uptake at S. aureus-infected prosthesis sites over either the same antibody at sterile prosthesis sites or of control non-specific antibody at infected prosthesis sites. Taken together, the radiolabeled anti-LTA mAb, [89Zr]SAC55, may serve as a valuable diagnostic molecular imaging probe to help distinguish between sterile inflammation and infection in the setting of PJI. Future studies are needed to determine whether these findings will translate to human PJI.

3.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185667

RESUMO

Bacterial biofilm infections of implantable medical devices decrease the effectiveness of antibiotics, creating difficult-to-treat chronic infections. Prosthetic joint infections (PJI) are particularly problematic because they require prolonged antibiotic courses and reoperations to remove and replace the infected prostheses. Current models to study PJI focus on Gram-positive bacteria, but Gram-negative PJI (GN-PJI) are increasingly common and are often more difficult to treat, with worse clinical outcomes. Herein, we sought to develop a mouse model of GN-PJI to investigate the pathogenesis of these infections and identify potential therapeutic targets. An orthopedic-grade titanium implant was surgically placed in the femurs of mice, followed by infection of the knee joint with Pseudomonas aeruginosa or Escherichia coli. We found that in vitro biofilm-producing activity was associated with the development of an in vivo orthopedic implant infection characterized by bacterial infection of the bone/joint tissue, biofilm formation on the implants, reactive bone changes, and inflammatory immune cell infiltrates. In addition, a bispecific antibody targeting P. aeruginosa virulence factors (PcrV and Psl exopolysaccharide) reduced the bacterial burden in vivo. Taken together, our findings provide a preclinical model of GN-PJI and suggest the therapeutic potential of targeting biofilm-associated antigens.


Assuntos
Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/terapia , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/terapia , Animais , Antibacterianos/uso terapêutico , Antígenos de Bactérias , Toxinas Bacterianas , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Escherichia coli , Fêmur , Infecções por Bactérias Gram-Negativas/patologia , Inflamação , Articulação do Joelho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ortopedia , Proteínas Citotóxicas Formadoras de Poros , Infecções Relacionadas à Prótese/patologia , Pseudomonas aeruginosa , Titânio , Fatores de Virulência
4.
Bone Res ; 3: 15024, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26273541

RESUMO

The skeleton is a common site of cancer metastasis. Notably high incidences of bone lesions are found for breast, prostate, and renal carcinoma. Malignant bone tumors result in significant patient morbidity. Identification of these lesions is a critical step to accurately stratify patients, guide treatment course, monitor disease progression, and evaluate response to therapy. Diagnosis of cancer in the skeleton typically relies on indirect bone-targeted radiotracer uptake at sites of active bone remodeling. In this manuscript, we discuss established and emerging tools and techniques for detection of bone lesions, quantification of skeletal tumor burden, and current clinical challenges.

5.
Am J Nucl Med Mol Imaging ; 2(2): 163-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133811

RESUMO

Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa