Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 59(11): 4844-4854, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31613613

RESUMO

Noble gases are chemically inert, and it was therefore thought they would have little effect on biology. Paradoxically, it was found that they do exhibit a wide range of biological effects, many of which are target-specific and potentially useful and some of which have been demonstrated in vivo. The underlying mechanisms by which useful pharmacology, such as tissue and neuroprotection, anti-addiction effects, and analgesia, is elicited are relatively unexplored. Experiments to probe the interactions of noble gases with specific proteins are more difficult with gases than those with other chemicals. It is clearly impractical to conduct the large number of gas-protein experiments required to gain a complete picture of noble gas biology. Given the simplicity of atoms as ligands, in silico methods provide an opportunity to gain insight into which noble gas-protein interactions are worthy of further experimental or advanced computational investigation. Our previous validation studies showed that in silico methods can accurately predict experimentally determined noble gas binding sites in X-ray structures of proteins. Here, we summarize the largest reported in silico reverse docking study involving 127 854 protein structures and the five nonradioactive noble gases. We describe how these computational screening methods are implemented, summarize the main types of interactions that occur between noble gases and target proteins, describe how the massive data set that this study generated can be analyzed (freely available at group18.csiro.au), and provide the NDMA receptor as an example of how these data can be used to understand the molecular pharmacology underlying the biology of the noble gases. We encourage chemical biologists to access the data and use them to expand the knowledge base of noble gas pharmacology, and to use this information, together with more efficient delivery systems, to develop "atomic drugs" that can fully exploit their considerable and relatively unexplored potential in medicine.


Assuntos
Gases Nobres/metabolismo , Proteínas/metabolismo , Animais , Sítios de Ligação , Bases de Dados de Proteínas , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química , Proteoma/química , Proteoma/metabolismo , Termodinâmica
2.
Phys Chem Chem Phys ; 14(13): 4365-73, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22270868

RESUMO

Microporous materials have a great importance in catalysis, delivery, storage and separation in terms of their performance and efficiency. Most microporous materials are comprised of inorganic frameworks, while thermally rearranged (TR) polymers are a microporous organic polymer which is tuned to optimize the cavity sizes and distribution for difficult separation applications. The sub-nano sized microcavities are controlled by in situ thermal treatment conditions which have been investigated by positron annihilation lifetime spectroscopy (PALS). The size and relative number of cavities increased from room temperature to 230 °C resulting in improvements in both permeabilities and selectivities for H(2)/CO(2) separation due to the significant increase of gas diffusion and decrease of CO(2) solubility. The highest performance of the well-tuned TR-polymer membrane was 206 Barrer for H(2) permeability and 6.2 of H(2)/CO(2) selectivity, exceeding the polymeric upper bound for gas separation membranes.


Assuntos
Dióxido de Carbono/química , Membranas Artificiais , Polímeros/química , Temperatura , Hidrogênio/química , Tamanho da Partícula , Polímeros/síntese química , Porosidade , Propriedades de Superfície
3.
Dalton Trans ; 45(10): 4352-9, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26733113

RESUMO

Defect engineering has arisen as a promising approach to tune and optimise the adsorptive performance of metal-organic frameworks. However, the balance between enhanced adsorption and structural stability remains an open question. Here both CO2 adsorption capacity and mechanical stability are calculated for the zirconium-based UiO-66, which is subject to systematic variations of defect scenarios. Modulator-dependence, defect concentration and heterogeneity are explored in isolation. Mechanical stability is shown to be compromised at high pressures where uptake is enhanced with an increase in defect concentration. Nonetheless this reduction in stability is minimised for reo type defects and defects with trifluoroacetate substitution. Finally, heterogeneity and auxeticity may also play a role in overcoming the compromise between adsorption and stability.

4.
Chem Commun (Camb) ; 52(19): 3750-3, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26800518

RESUMO

The porosity of a glass formed by melt-quenching a metal-organic framework, has been characterized by positron annihilation lifetime spectroscopy. The results reveal porosity intermediate between the related open and dense crystalline frameworks ZIF-4 and ZIF-zni. A structural model for the glass was constructed using an amorphous polymerization algorithm, providing additional insight into the gas-inaccessible nature of porosity and the possible applications of hybrid glasses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa