Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 38(10): 2084-94, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918203

RESUMO

Methamphetamine epidemic has a broad impact on world's health care system. Its abusive potential and neurotoxic effects remain a challenge for the anti-addiction therapies. In addition to oxidative stress, mitochondrial dysfunction and apoptosis, excitotoxicity is also involved in methamphetamine induced neurotoxicity. The N-methyl-D-aspartate (NMDA) type of glutamate receptor is thought to be one of the predominant mediators of excitotoxicity. There is growing evidence that NMDA receptor antagonists could be one of the therapeutic options to manage excitotoxicity. Amantadine, a well-tolerated and modestly effective antiparkinsonian agent, was found to possess NMDA antagonistic properties and has shown to release dopamine from the nerve terminals. The current study aimed to evaluate the effect of amantadine pre-treatment against methamphetamine induced neurotoxicity. Results showed that methamphetamine treatment had depleted striatal dopamine, generated of reactive oxygen species and decreased activity of complex I in the mitochondria. Interestingly, amantadine, at high dose (10 mg/kg), did not prevent dopamine depletion moreover it exacerbated the behavioral manifestations of methamphetamine toxicity such as akinesia and catalepsy. Only lower dose of amantadine (1 mg/kg) produced significant scavenging of the reactive oxygen species induced by methamphetamine. Overall results from the present study suggest that amantadine should not be used concomitantly with methamphetamine as it may results in excessive neurotoxicity.


Assuntos
Amantadina/uso terapêutico , Metanfetamina/intoxicação , Síndromes Neurotóxicas/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Mitocondriais/induzido quimicamente , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Serotonina/metabolismo , Superóxido Dismutase/metabolismo
2.
Life Sci ; 154: 24-9, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926078

RESUMO

AIMS: Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. MAIN METHODS: The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. KEY FINDINGS: Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. SIGNIFICANCE: One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the stimulants or drugs of abuse.


Assuntos
Dopamina/metabolismo , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Ácido Salicílico/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Free Radic Biol Med ; 55: 119-29, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159546

RESUMO

The ß93 cysteine (ß93Cys) residue of hemoglobin is conserved in vertebrates but its function in the red blood cell (RBC) remains unclear. Because this residue is present at concentrations more than 2 orders of magnitude higher than enzymatic components of the RBC antioxidant network, a role in the scavenging of reactive species was hypothesized. Initial studies utilizing mice that express human hemoglobin with either Cys (B93C) or Ala (B93A) at the ß93 position demonstrated that loss of the ß93Cys did not affect activities nor expression of established components of the RBC antioxidant network (catalase, superoxide dismutase, peroxiredoxin-2, glutathione peroxidase, GSH:GSSG ratios). Interestingly, exogenous addition to RBCs of reactive species that are involved in vascular inflammation demonstrated a role for the ß93Cys in hydrogen peroxide and chloramine consumption. To simulate oxidative stress and inflammation in vivo, mice were challenged with lipopolysaccharide (LPS). Notably, LPS induced a greater degree of hypotension and lung injury in B93A versus B93C mice, which was associated with greater formation of RBC reactive species and accumulation of DMPO-reactive epitopes in the lung. These data suggest that the ß93Cys is an important effector within the RBC antioxidant network, contributing to the modulation of tissue injury during vascular inflammation.


Assuntos
Antioxidantes/metabolismo , Cisteína/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Animais , Cisteína/química , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa