Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 101(5): 1135-1151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31642116

RESUMO

The development of salt-tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate the genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD-genome) and diploid (A- and D-genome) Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to 2 weeks of exposure to moderate (50 mm NaCl) and high (100 mm NaCl) hydroponic salinity treatments. Our results showed that the most salt-tolerant species were the allopolyploid Gossypium mustelinum from north-east Brazil, the D-genome diploid Gossypium klotzschianum from the Galapagos Islands, followed by the A-genome diploids of Africa and Asia. Generally, A-genome accessions outperformed D-genome cottons under salinity conditions. Allopolyploid accessions from either diploid genomic group did not show significant differences in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy in itself need not be associated with increased salinity stress tolerance and provide information for using the secondary Gossypium gene pool to breed for improved salt tolerance.


Assuntos
Genoma de Planta/genética , Gossypium/genética , Tolerância ao Sal/genética , Cruzamento , Diploide , Genótipo , Gossypium/fisiologia , Poliploidia , Salinidade
2.
J Exp Bot ; 71(15): 4495-4511, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32188989

RESUMO

Nitrogen (N)-fixing soybean plants use the ureides allantoin and allantoic acid as major long-distance transport forms of N, but in non-fixing, non-nodulated plants amino acids mainly serve in source-to-sink N allocation. However, some ureides are still synthesized in roots of non-fixing soybean, and our study addresses the role of ureide transport processes in those plants. In previous work, legume ureide permeases (UPSs) were identified that are involved in cellular import of allantoin and allantoic acid. Here, UPS1 from common bean was expressed in the soybean phloem, which resulted in enhanced source-to-sink transport of ureides in the transgenic plants. This was accompanied by increased ureide synthesis and elevated allantoin and allantoic acid root-to-sink transport. Interestingly, amino acid assimilation, xylem transport, and phloem partitioning to sinks were also strongly up-regulated. In addition, photosynthesis and sucrose phloem transport were improved in the transgenic plants. These combined changes in source physiology and assimilate partitioning resulted in increased vegetative growth and improved seed numbers. Overall, the results support that ureide transport processes in non-fixing plants affect source N and carbon acquisition and assimilation as well as source-to-sink translocation of N and carbon assimilates with consequences for plant growth and seed development.


Assuntos
Fabaceae , Glycine max , Nitrogênio , Floema , Sementes , Glycine max/genética
3.
BMC Plant Biol ; 19(1): 378, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455245

RESUMO

BACKGROUND: Male sterility has tremendous scientific and economic importance in hybrid seed production. Identification and characterization of a stable male sterility gene will be highly beneficial for making hybrid seed production economically feasible. In soybean, eleven male-sterile, female-fertile mutant lines (ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, msMOS, and msp) have been identified and mapped onto various soybean chromosomes, however the causal genes responsible for male sterility are not isolated. The objective of this study was to identify and functionally characterize the gene responsible for the male sterility in the ms4 mutant. RESULTS: The ms4 locus was fine mapped to a 216 kb region, which contains 23 protein-coding genes including Glyma.02G243200, an ortholog of Arabidopsis MALE MEIOCYTE DEATH 1 (MMD1), which is a Plant Homeodomain (PHD) protein involved in male fertility. Isolation and sequencing of Glyma.02G243200 from the ms4 mutant line showed a single base insertion in the 3rd exon causing a premature stop codon resulting in truncated protein production. Phylogenetic analysis showed presence of a homolog protein (MS4_homolog) encoded by the Glyma.14G212300 gene. Both proteins were clustered within legume-specific clade of the phylogenetic tree and were likely the result of segmental duplication during the paleoploidization events in soybean. The comparative expression analysis of Ms4 and Ms4_homologs across the soybean developmental and reproductive stages showed significantly higher expression of Ms4 in early flowering (flower bud differentiation) stage than its homolog. The functional complementation of Arabidopsis mmd1 mutant with the soybean Ms4 gene produced normal stamens, successful tetrad formation, fertile pollens and viable seeds, whereas the Ms4_homolog was not able to restore male fertility. CONCLUSIONS: Overall, this is the first report, where map based cloning approach was employed to isolate and characterize a gene responsible for the male-sterile phenotype in soybean. Characterization of male sterility genes may facilitate the establishment of a stable male sterility system, highly desired for the viability of hybrid seed production in soybean. Additionally, translational genomics and genome editing technologies can be utilized to generate new male-sterile lines in other plant species.


Assuntos
Glycine max/fisiologia , Proteínas de Homeodomínio/genética , Mutação , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Reprodução , Glycine max/genética
4.
Sci Rep ; 6: 34309, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27679939

RESUMO

The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa